Probing the Release of Shocked Material

D. Polsin **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Optical probing is used to characterize the release of shocked materials into vacuum

- National Ignition Facility (NIF) shock-timing measurements revealed inconsistencies in the predicted release of the ablator into the deuterium fuel
- Angular filter refractometry (AFR) imaging provided a measurement of release velocities and density-gradient scale lengths of the released material
- The spatial density profile for the shock-released state is very steep with an exponential scale length of \leq 35 μ m
- The entire diagnostic system was simulated in *FRED* and an analytic release density profile was used to create a synthetic AFR image

Collaborators

T. R. Boehly, S. Ivancic, M. C. Gregor, C. A. McCoy, and K. S. Anderson

University of Rochester Laboratory for Laser Energetics

D. E. Fratanduono and P. M. Celliers

Lawrence Livermore National Laboratory

D. D. Meyerhofer

Los Alamos National Laboratory

Motivation

Initial NIF shock-timing experiments revealed inaccuracies in the ablator release model

The glow-discharge polymer (GDP) equation-of-state model was corrected using release data into liquid D₂.**

*H. F. Robey et al., Phys. Plasmas <u>19</u>, 042706 (2012). **S. Hamel et al., Phys. Rev. B 86, 094113 (2012).

AFR maps the refraction angle of the probe beam at target chamber center (TCC) to contours in the image plane

D. Haberberger et al., Phys. Plasmas 21, 056304 (2014).

A UV beam probed the release plumes of shocked materials and VISAR provided the initial conditions

E23569b ROCHESTER

Shot 18670

When shocked to 13.2 Mbar, CH releases into a vacuum at ~90 km/s— $3 \times U_p$ and in agreement with LEOS 5111

E23570c

A stratified plasma can be used to model the refraction signal from a release plume

Phase shift through plasma
$$\Phi = \frac{\omega}{c} \int_0^{L_z} N dI = \frac{\omega}{c} \int_0^{L_z} \sqrt{1 - \frac{n_e}{n_c}} dI \approx \frac{\omega}{2cn_c} \int_0^{L_z} n_e dI$$

$$\Phi = \frac{\pi}{\lambda n_c} \int_0^{L_z} n_e dI, \quad n_c = \frac{1.1 \times 10^{21} \text{ cm}^{-3}}{\lambda_{\mu m}^2}$$

Ray divergence through plasma
$$\theta = \frac{2\pi}{\lambda} \frac{\partial \Phi}{\partial r} \simeq \frac{n_e L_z}{n_c L_n}$$

The refraction angle is proportional to the plasma density and L_z/L_n .

E24218b

Assumptions: $n_{e} < n_{c,probe}$ $\theta \ll 1$ (radian)

The electron density and density-gradient scale length of the release wave are measured assuming a plasma model for the refractive index

• Density-gradient scale length: 35 μ m

E23571b

ROCHESTER

 $n_{c} = 1.6 \times 10^{22} \text{ cm}^{-3}$

The axial density profile is assumed to be exponential and the transverse shape is fit to the probe images

The full diagnostic system was simulated in FRED* and an analytic release density profile was used in the optical model to create a synthetic AFR image

E24455b

*Photon Engineering, LLC, Tucson, AZ 85711.

Refraction data from a release plume are similar in size and extent to those in a shock front

The scale lengths of the release plume and shock front produce refraction outside the acceptance angle of the optics.

E24457a

Shock front

Optical probing is used to characterize the release of shocked materials into vacuum

- National Ignition Facility (NIF) shock-timing measurements revealed inconsistencies in the predicted release of the ablator into the deuterium fuel
- Angular filter refractometry (AFR) imaging provided a measurement of release velocities and density-gradient scale lengths of the released material
- The spatial density profile for the shock-released state is very steep with an exponential scale length of \leq 35 μ m
- The entire diagnostic system was simulated in *FRED* and an analytic release density profile was used to create a synthetic AFR image

