A 3-D Model of Hot-Spot Formation in Inertial Confinement Fusions Implosions

UR
LLE

Hot-spot boundary Temperature map T (keV)

—20 0 20

Distance (um)

57th Annual Meeting of the
American Physical Society

X. Gong Division of Plasma Physics
University of Rochester Savannah, GA
Laboratory for Laser Energetics 16—20 November 2015




A 3-D model describing the formation of a hot spot in inertial confinement
fusion (ICF) implosions has been developed
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* A hot-spot shape is calculated using the results of a sharp-boundary
Rayleigh—Taylor (RT) model

* Modification of the hydro profile caused by 3-D effects is calculated using a model
developed by Sanz et al.*

* Results of the model will be compared to detailed 3-D simulations in future work

J. Sanz and R. Betti, Phys. Plasmas 12, 042704 (2005).
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ICF implosions evolve through several stages

UR
LLE
Peak compression - Early time
- Imprinting 0
'_ ' | Stagnation + core-shell mix and shock
Higher Lower '/ Laser drive
adiabat diabat Y R Feedout
20 - adiabat — N> Pcores PRcore + shell u
(CPS,* x-ray imaging, :
s secondary neutrons) Plaa: Clln i?nf:rrirr?t?;lg :
g 151 —
= «—LPI*
g 10 I
Feedthrough " Rayleigh-Taylor growth,
] /1 \ mitigation, and saturation
Rayleigh—-Taylor Shock convergence
growth
0 . . Laser drive
0 1 2

Deceleration phase

Time (ns) ‘

This work focuses on deceleration phase instability growth

Acceleration phase

*CPS: charged-particle spectrometer
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Three-dimensional simulations and experimental data suggest
that long-wavelength nonuniformity growth limits target performance
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e ASTER* 3-D simulation, including power imbalance and target offset (at peak neutron-production time)
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A 3-D hot-spot nonuniformity model has been developed
to study hot-spot-formation physics

TC12428 J. Sanz and R. Betti, Phys. Plasmas 12, 042704 (2005).
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A 3-D sharp boundary model was used to determine the perturbation evolution
at the inner shell surface
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* Takes into account the time variation in the unperturbed state
e Solves the sharp-boundary model in two regions
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* The model involves solving a temporal second-order ordinary differential equation

* 1-D hydroprofiles are determined from LILAC simulations
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Hydro profiles are extracted using LILAC 1-D simulations
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The RT model was used to calculate perturbation evolution
during shell deceleration
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Three-dimensional hot-spot profiles are obtained using the isobaric model
of Sanz et al.
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Solve the Poisson equation
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The boundary is the solution of sharp-boundary model

. Thermal conductivity
e Solve for hot-spot pressure, mass, and temperature K = kTN, take 1 = 2.5
Ths | Hot-spot temperaure
Ps V223 =Py V33 Mhs Hot-spot mass
Vhs Hot-spot volume
P..V 1/n _
Ths = ¢ nl:;s hs (Ww ) Phs Mpg/Vhs
hs max p Hot-spot pressure
hs (uniform)
* Neutron yield and average temperature are calculated using 3-D C Constant
constant = 1.89 hydroprofiles predicted by this model
TC12431 J. Sanz and R. Betti, Phys. Plasmas 12, 042704 (2005).




Neutron yield and ion temperature are obtained using derived hydro profiles
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Summary/Conclusions

A 3-D model describing the formation of a hot spot in inertial confinement
fusion (ICF) implosions has been developed
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* A hot-spot shape is calculated using the results of a sharp-boundary
Rayleigh—Taylor (RT) model

* Modification of the hydro profile caused by 3-D effects is calculated using a model
developed by Sanz et al.*

* Results of the model will be compared to detailed 3-D simulations in future work

J. Sanz and R. Betti, Phys. Plasmas 12, 042704 (2005).
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