Application and Analysis of the Isoelectronic Line-Ratio Temperature Diagnostic in a Planar Ablating-Plasma Experiment at the National Ignition Facility

R. Epstein University of Rochester Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

The isoelectronic Co/Mn He_{α} line ratio is a good temperature diagnostic for ablating plasmas

- The Co/Mn He_{α} line ratio was used to measure the electron temperature in planar experiments performed to study the beam angle-of-incidence dependence of the two-plasmon–decay (TPD) instability
- The density sensitivity of this line ratio is a source of systematic error and a consideration in choosing microdot materials
- Spectrum simulations show that the He_{α} line ratio is only modestly affected by self-absorption

Collaborators

M. J. Rosenberg, A. A. Solodov, J. F. Myatt, S. P. Regan, W. Seka, and M. Hohenberger University of Rochester Laboratory for Laser Energetics

> M. A. Barrios and J. D. Moody Lawrence Livermore National Laboratory

Temperatures in two planar experiments performed at the National Ignition Facility (NIF) were inferred from isoelectronic line ratios from embedded Co/Mn microdots

- *PrismSPECT** for parameter $(\mathbf{T}_{\mathbf{e}}, \boldsymbol{\rho})$ surveys
 - detailed atomic modeling
 - self-absorption modeled as local photon-escape probabilities in spherical geometry
- Spect3D* simulations include the same detailed atomic model plus
 - microdot conditions obtained from T_{e}, ρ histories from DRACO CH foil simulations
 - realistic microdot geometry with the actual 7° viewing angle
 - nonlocal coupling of radiation with atomic kinetics

*Prism Computational Sciences, Inc., Madison, WI 53711.

Spectra were measured through the entire duration of the laser pulse by the NXS spectrometer

• Line ratios are based on 200-eV spectral integrals

Consistent Co/Mn microdot line ratios have been obtained using DRACO T_{e} , ρ trajectories with *PrismSPECT* and *Spect3D* modeling

- Spect3D simulations, including nonlocal radiation transport, are based on the axially expanded microdot shape and the actual 7° viewing angle
- Very similar results are obtained for free-escape, local, and nonlocal photon-transport modeling

The isoelectronic He_{α} line ratio^{*} is primarily a function of electron temperature T_e , depending weakly on n_e and optical thickness

• The measured Co/Mn He_{α} line ratio indicates $T_e \approx 4$ keV at $n_c/4$, compared to $T_e \approx 3$ keV predicted by DRACO CH foil simulations

*R. Marjoribanks et al. Phys. Rev. A 46, 1747(R) (1992).

There is little effect of self-absorption on the Co/Mn He $_{\alpha}$ ratio for quarter-critical microdot conditions

• Use microdot-scale spheres to test the effects **PrismSPECT** calculations of self-absorption on optically thick lines – line attenuation 1.2 Co/Mn He $_{lpha}$ line ratio – pumping of the He_{α}-emitting states 8.0 ρ = 8.7 mg/cm³ Optically Equivalent **R** of thin limit 0.4 $n_{e} = n_{c}/4$ $n_{\rm c}/4$ microdot $au_{\mathsf{He}_{\alpha}} \ll 1$ $au_{Helpha}\lesssim 20$ Radius **R** 0.0 100 200 300 0

- The supply of emitted He $_{\alpha}$ photons is determined by the 1s–2p collisional excitation rate
- He_{α} photon absorption is followed by re-emission with near-certain probability

Sphere radius **R** (μ m)

Temperature measurement based on the Co/Mn line ratio does not require a stringent density constraint

- Temperature measurement from density-dependent line ratios requires some prior knowledge of the density
- Alternative microdot materials offer higher temperature sensitivity at the expense of higher-density sensitivity

The isoelectronic Co/Mn He_{α} line ratio is a good temperature diagnostic for ablating plasmas

- The Co/Mn He_{α} line ratio was used to measure the electron temperature in planar experiments performed to study the beam angle-of-incidence dependence of the two-plasmon–decay (TPD) instability
- The density sensitivity of this line ratio is a source of systematic error and a consideration in choosing microdot materials
- Spectrum simulations show that the He_{α} line ratio is only modestly affected by self-absorption

He_{α} line ratios from lower-Z elements, e.g., V/Sc, are more temperature sensitive than Co/Mn

• Density 0.005 g/cm³

- Temperature dependence is primarily from ionization balance and collisional 1s–2p excitation
- Mn and V He $_{\alpha}$ are not in the same NXS channel

The total δT temperature estimate uncertainty depends on the line ratio measurement uncertainty δr and also on a density constraint $\delta \log_{10} \rho$

• Density 0.005 g/cm³, temperature \approx 3.0 keV

