Recent Advances in the Transport Modeling of Two-Plasmon–Decay Electrons in the 1-D Hydrodynamics Code LILAC

-CH: 721 pC Multilayer: 88.7 pC

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

LILAC simulations using an improved fast-electron transport model reproduce the timing of the hard x-ray (HXR) emission in OMEGA experiments

- Improvements have been added to the fast-electron straight-line transport model to study the effect of two-plasmon–decay (TPD) fast electrons
 - random departure from specular reflection at the target outer boundary
 - source divergence
- Two spherical OMEGA implosions with different shell materials (CH and a Si layer) were simulated
 - the relative HXR emission levels are well reproduced
 - the threshold parameter is lower for the Si-layer target than for the CH target, leading to a lower HXR emission

Collaborators

B. Yaakobi, J. F. Myatt, C. Stoeckl, and D. H. Edgell University of Rochester Laboratory for Laser Energetics

The source of fast electrons is based on the measured HXR emission from intensity sweep experiments

- The HXR emission depends on the threshold parameter: $\eta = I_{14}$ (at $n_c/4$)* $L(\mu m)/[233T (keV)]$ *
- The source function was designed to follow the same dependence as the HXR emission

Normalized experimental points

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

Target performance is not sensitive to random deflection of electrons above 4°

- Specularly reflecting an electron at the target boundary sends it along the same path until it stops
- To model the fact that the sheath is not smooth and E and B fields are present in the corona,* a random Gaussian angle is added to the reflected angle

*F. H Séguin et al., Phys. Plasma 19, 012701 (2012).

Target performance is insensitive to the source divergence angle above the 60° half-angle

Simulations used a 90° half-angle source divergence.

Various ablator designs are being studied to evaluate the mitigation of fast-electron production*

The simulations were carried out with cross-beam energy transfer (CBET) and nonlocal thermal transport in the 1-D hydrocode LILAC using the same fast-electron source parameters.

*D. H. Froula et al., NO5.00001, this conference.

The threshold parameter for the multilayer target is reduced even though intensities at $n_c/4$ are identical

The source model gives good agreement with experiment in the timing and relative levels of the HXR emission

The HXR emission is very sensitive to the steep source function; a 1% error in the threshold parameter leads to a 17% difference in the HXR emission.

TC12522 ROCHESTER

power -aser

Summary/Conclusions

LILAC simulations using an improved fast-electron transport model reproduce the timing of the hard x-ray (HXR) emission in OMEGA experiments

- Improvements have been added to the fast-electron straight-line transport model to study the effect of two-plasmon–decay (TPD) fast electrons
 - random departure from specular reflection at the target outer boundary
 - source divergence
- Two spherical OMEGA implosions with different shell materials (CH and a Si layer) were simulated
 - the relative HXR emission levels are well reproduced
 - the threshold parameter is lower for the Si-layer target than for the CH target, leading to a lower HXR emission

TC12478

10

Replacing the SG4 phase plate with SG5 plates increased the HXR emission

Shot #	Phase plate	HXR (pC)	hoR
75588	SG4	129	
76147	SG5	210	

Detailed ray-trace simulations showed no difference in the TPD gain between the two shots.

ROCHESTER

TC12480

11

The source intensity and the HXR emission is narrower in time when CBET is included

ROCHESTER

The threshold parameter in the case with CBET is below unity because of the lower intensity at the $n_c/4$ surface

27- μ m-thick CH target at 10¹⁵ W/cm²

For the multilayer target, the lower scale lengths and higher temperatures compared to the CH target give a smaller threshold parameter

