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HXR emission from simulation
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Summary

LILAC simulations using an improved fast-electron transport model reproduce 
the timing of the hard x-ray (HXR) emission in OMEGA experiments

• Improvements have been added to the fast-electron straight-line transport 
model to study the effect of two-plasmon–decay (TPD) fast electrons

– random departure from specular reflection at the target outer boundary

– source divergence

• Two spherical OMEGA implosions with different shell materials  
(CH and a Si layer) were simulated

– the relative HXR emission levels are well reproduced

– the threshold parameter is lower for the Si-layer target than for the CH 
target, leading to a lower HXR emission
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The source of fast electrons is based on the measured  
HXR emission from intensity sweep experiments
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• The HXR emission depends on the threshold parameter: h = I14 (at nc /4)*L(nm)/[233*T (keV)]*

• The source function was designed to follow the same dependence as the HXR emission 
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*A. Simon et al., Phys. Fluids 26, 3107 (1983).



Target performance is not sensitive to random deflection of electrons above 4°
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• Specularly reflecting an electron at the target boundary sends it along the same path until it stops

• To model the fact that the sheath is not smooth and E and B fields are present in the corona,*  
a random Gaussian angle is added to the reflected angle
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*F. H Séguin et al., Phys. Plasma 19, 012701 (2012).
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Target performance is insensitive to the source divergence angle  
above the 60° half-angle
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Simulations used a 90° half-angle source divergence.
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Various ablator designs are being studied to evaluate the mitigation  
of fast-electron production*
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The simulations were carried out with cross-beam energy transfer (CBET) and nonlocal thermal 
transport in the 1-D hydrocode LILAC using the same fast-electron source parameters.

*D. H. Froula et al., NO5.00001, this conference.
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The threshold parameter for the multilayer target is reduced  
even though intensities at nc /4 are identical
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Threshold parameter: h = I14 (at nc/4)*L(nm)/[233*T(keV)]

The smaller threshold parameter for the multilayer target is caused by 
lower scale lengths and higher temperatures compared to the CH target.
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HXR emission from simulation

E
m

itt
ed

 p
o

w
er

 (
×

10
8  

W
)

L
as

er
 p

o
w

er
 (

T
W

)

0.0 0

5

10

15

20

25

0.5

1.0

1.5

2.0

2.5

3.0

2 3

CH: 721 pC
Multilayer: 
88.7 pC

TC12522

The source model gives good agreement with experiment  
in the timing and relative levels of the HXR emission
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The HXR emission is very sensitive to the steep source function; a 1% error 
in the threshold parameter leads to a 17% difference in the HXR emission.
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Summary/Conclusions

LILAC simulations using an improved fast-electron transport model reproduce 
the timing of the hard x-ray (HXR) emission in OMEGA experiments

• Improvements have been added to the fast-electron straight-line transport 
model to study the effect of two-plasmon–decay (TPD) fast electrons

– random departure from specular reflection at the target outer boundary

– source divergence

• Two spherical OMEGA implosions with different shell materials  
(CH and a Si layer) were simulated

– the relative HXR emission levels are well reproduced

– the threshold parameter is lower for the Si-layer target than for the CH 
target, leading to a lower HXR emission
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Replacing the SG4 phase plate with SG5 plates increased the HXR emission
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Detailed ray-trace simulations 
showed no difference in the TPD 
gain between the two shots.
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The source intensity and the HXR emission  
is narrower in time when CBET is included
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The threshold parameter in the case with CBET is below unity  
because of the lower intensity at the nc/4 surface
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27-nm-thick CH target at 1015 W/cm2
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For the multilayer target, the lower scale lengths and higher temperatures 
compared to the CH target give a smaller threshold parameter
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