Recent Advances in the Transport Modeling of Two-Plasmon-Decay Electrons
in the 1-D Hydrodynamics Code LILAC
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LILAC simulations using an improved fast-electron transport model reproduce
the timing of the hard x-ray (HXR) emission in OMEGA experiments
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* Improvements have been added to the fast-electron straight-line transport
model to study the effect of two-plasmon-decay (TPD) fast electrons

— random departure from specular reflection at the target outer boundary
— source divergence
 Two spherical OMEGA implosions with different shell materials
(CH and a Si layer) were simulated
— the relative HXR emission levels are well reproduced

— the threshold parameter is lower for the Si-layer target than for the CH
target, leading to a lower HXR emission
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The source of fast electrons is based on the measured
HXR emission from intensity sweep experiments
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e The HXR emission depends on the threshold parameter: 7 = 114 (at ng/4)*L(um)/[233*T (keV)]*
* The source function was designed to follow the same dependence as the HXR emission

TC12479 *A. Simon et al., Phys. Fluids 26, 3107 (1983).
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Target performance is not sensitive to random deflection of electrons above 4°
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e Specularly reflecting an electron at the target boundary sends it along the same path until it stops

* To model the fact that the sheath is not smooth and E and B fields are present in the corona,*
a random Gaussian angle is added to the reflected angle
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Target performance is insensitive to the source divergence angle
above the 60° half-angle
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Sensitivity to the source divergence Sensitivity to the source divergence
in cryogenic implosions with random deflection
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Simulations used a 90° half-angle source divergence.
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Various ablator designs are being studied to evaluate the mitigation
of fast-electron production*
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The simulations were carried out with cross-beam energy transfer (CBET) and nonlocal thermal
transport in the 1-D hydrocode LILAC using the same fast-electron source parameters.

TC12483 *D. H. Froula et al., NO5.00001, this conference.




The threshold parameter for the multilayer target is reduced
even though intensities at n./4 are identical
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Threshold parameter: 7 = I'14 (at no/4)*L(um)/[233*T(keV)]
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The smaller threshold parameter for the multilayer target is caused by
lower scale lengths and higher temperatures compared to the CH target.
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The source model gives good agreement with experiment
in the timing and relative levels of the HXR emission
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The HXR emission is very sensitive to the steep source function; a 1% error
in the threshold parameter leads to a 17% difference in the HXR emission.
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Summary/Conclusions

LILAC simulations using an improved fast-electron transport model reproduce
the timing of the hard x-ray (HXR) emission in OMEGA experiments
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* Improvements have been added to the fast-electron straight-line transport
model to study the effect of two-plasmon-decay (TPD) fast electrons

— random departure from specular reflection at the target outer boundary
— source divergence
 Two spherical OMEGA implosions with different shell materials
(CH and a Si layer) were simulated
— the relative HXR emission levels are well reproduced

— the threshold parameter is lower for the Si-layer target than for the CH
target, leading to a lower HXR emission
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Replacing the SG4 phase plate with SG5 plates increased the HXR emission
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Beam profiles for SG4
and SG5 phase plates
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The source intensity and the HXR emission
is narrower in time when CBET is included
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The threshold parameter in the case with CBET is below unity
because of the lower intensity at the n./4 surface
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27-um-thick CH target at 101° W/cm?2
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For the multilayer target, the lower scale lengths and higher temperatures
compared to the CH target give a smaller threshold parameter
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