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Summary

Far-field spot shapes have been designed for the National Ignition Facility 
(NIF) polar-direct-drive (PDD) experiments at intermediate energies

• Far-field spot shapes are based on a PDD ignition configuration using the nonlocal 
electron transport implicit Schurtz–Nicolaï–Busquet method (iSNB)

• The design shows increased target performance over the previous iteration

• Spot-shape envelope distortions caused by multi-FM do not decrease target performance
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PDD experiments planned for the NIF will be done by repointing 
existing beamlines
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The intermediate distributed phase-plate (iDPP) design uses a 1-D plastic-shell 
design* that was scaled from OMEGA
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• NIF PDD implosions will be 
run at intermediate energies

– #800 kJ

• Design objectives
– a round, symmetric 

hot spot
– a convergence ratio 

near or above 17

0.8

0.6

0.4

0.2

0.0

0.6

1.0

1.4

1.8

0.2

20 4 6 8 10 12

P
o

w
er

 (
×1

02
 T

W
)

t
D

r t
o

ta
l (

g
/c

m
2 )

Time (ns)

80 nm CH

15-atm
DD gas

13
00

 n
m

*F. Weilacher et al., Phys. Plasmas 22, 032701 (2015).
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Spot profile changes caused by dynamic bandwidth reduction are included 
in the design simulations
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• Intermediate-energy NIF experiments will use dynamic bandwidth reduction (DBR) 
to increase drive energy

• 1-D multi-FM smoothing by spectral dispersion (SSD) is applied to only the pickets
– far-field spot shape side effects spread beam spots along the polar angle
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The iDPP design is based on an ignition PDD configuration, 
which accounts for nonlocal electron transport (iSNB)*

• All spots have an ellipticity of one before spot-masking and multi-FM are applied
• The spot-masking radius is 95% of the 1300-nm target radius
• There is a secondary ellipse on Rings 4 and 5
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*T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).
†SG: super-Gaussian
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The improved design was obtained using an established design procedure*

• Start with a LILAC simulation that is tuned for a given objective

• Tune ring pointing angles, spot shapes, and ring energies in DRACO to reduce shell 
asymmetry with the goal of matching the LILAC shell trajectory and shock timing 

• Design iteration guidelines determined during this project

– once the spot shapes and pointing angles are determined, the picket ring 
energies determine the shock shape

– the shell morphology is primarily determined by the drive-pulse energies 
and beam-pointing angles; this is where most optimization iteration occurs
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*J. A. Marozas et al., Phys. Plasmas 13, 056311 (2006).



TC12473a

The improved design experiences less nonuniformity, 
leading to a higher neutron yield

• The spot shapes and pointing angles used for the igniting nonlocal design 
worked for the iDPP design as well
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*YOC: Yield-over-clean
**CR: convergence ratio

***F. Weilacher et al., Phys. Plasmas 22, 032701 (2015).

Previous design*** New design
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For reduced cost per phase plate, manufacturing phase error (MPE) 
can be relaxed to 25 nm when accounting for worst-case wave front error (WFE)
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Reducing iDPP MPE to below 25 nm gives a diminishing return 
for minimizing the inner surface rms.
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Summary/Conclusions
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Far-field spot shapes have been designed for the National Ignition Facility 
(NIF) polar-direct-drive (PDD) experiments at intermediate energies

• Far-field spot shapes are based on a PDD ignition configuration using the nonlocal 
electron transport implicit Schurtz–Nicolaï–Busquet method (iSNB)

• The design shows increased target performance over the previous iteration

• Spot-shape envelope distortions caused by multi-FM do not decrease target performance


