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SummarySummary

Nonlocal (NL) electron transport is required in 
1-D LILAC simulations to reproduce the measured 
hydrodynamic coupling

•	 The self-emission x-ray imaging measures the hydrodynamic 
coupling (implosion velocity and mass ablation rate)

•	 The mass ablation rate is underestimated when using a time-dependent 
flux limiter adapted to match the experimental shell trajectory

•	 LILAC with NL and CBET accurately models the hydrodynamic coupling, 
reproducing both the transfer of the laser energy to the plasma 
(absorption) and of the plasma energy to the kinetic energy of the shell
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Direct-drive inertial confinement fusion implosions are 
driven by laser energy absorbed near the critical density 
and transported by electrons to the ablation surface
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Measurements of the trajectory (Vshell) and the CD burnthrough ,d dm t M^ h6 @ 
constrain the coupling physics in direct-drive implosions.
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Self-emission x-ray imaging provides a tool to study shell 
velocity and mass ablation rate in cryogenic implosions

E23547

The DT peak corresponds to the ablation 
front,* whereas the CD peak corresponds 
to the position of the CD/DT interface in 
the coronal plasma.

*D. T. Michel et al., Rev. Sci. Instr. 83, 10E530 (2012).
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Self-emission x-ray imaging provides a tool to study shell 
velocity and mass ablation rate in cryogenic implosions
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*D. T. Michel et al., Rev. Sci. Instr. 83, 10E530 (2012).

The DT peak corresponds to the ablation 
front,* whereas the CD peak corresponds 
to the position of the CD/DT interface in 
the coronal plasma.



In cryogenic implosions, the shell trajectories  
are measured from the CD emission (early time)  
and the DT emission (late time)
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Shell Velocity
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The simultaneous measurement of the trajectory  
and the CD/DT interface makes it possible to determine 
the CD burnthrough time*
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The CD burnthrough corresponds to 
the time when the CD/DT interface 
separates from the ablation front.

Mass Ablation Rate

*A. K. Davis et al., Rev. Sci. Instr. 85, 11D616 (2014).
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Shell trajectories and CD burnthrough are reproduced 
by LILAC simulations when including CBET and NL
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Shell Velocity

When matching shell trajectory, time-dependent flux-limiter simulations 
predict a burnthrough time 250 ps later than in the experiment.
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At the burnthrough time, the remaining mass of the shell
corresponds to the initial mass of the DT
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Shell Velocity

When matching shell trajectory, time-dependent flux-limiter simulations 
overestimate the shell mass and the kinetic energy by 26%.
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LILAC simulations that include NL and CBET reproduce 
both the absorption and the kinetic energy of the shell
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Shell Velocity

The code accurately models the hydrodynamic coupling 
in cryogenic implosions.
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SummarySummary/Conclusions

Nonlocal (NL) electron transport is required in 
1-D LILAC simulations to reproduce the measured 
hydrodynamic coupling

•	 The self-emission x-ray imaging measures the hydrodynamic 
coupling (implosion velocity and mass ablation rate)

•	 The mass ablation rate is underestimated when using a time-dependent 
flux limiter adapted to match the experimental shell trajectory

•	 LILAC with NL and CBET accurately models the hydrodynamic coupling, 
reproducing both the transfer of the laser energy to the plasma 
(absorption) and of the plasma energy to the kinetic energy of the shell


