Heat-Flux Measurements from Thomson-Scattering Spectra

R. J. Henchen University of Rochester Laboratory for Laser Energetics 56th Annual Meeting of the American Physical Society Division of Plasma Physics New Orleans, LA 27–31 October 2014

Summary

Upcoming experiments on OMEGA will use Thomson-scattering (TS) spectra to measure heat flux in coronal plasmas

- Heat flux in plasmas alters electron distribution functions, which affect Landau damping of ion-acoustic waves (IAW's) and electron plasma waves (EPW's)
- Thomson scattering is sensitive to changes in Landau damping and will provide a measurement of heat flux
- Local plasma conditions obtained from Thomson scattering will be used to calculate the Spitzer–Härm (SH) heat flux
- The heat flux obtained from both methods will test the validity of SH in the corona

V. N. Goncharov, S. X. Hu, R. K. Follett, J. Katz, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

W. Rozmus

University of Alberta

Thomson scattering will be used to probe EPW k vectors in the direction of the heat flux

The ratio of amplitudes from Thomson-scattered EPW's will be used to infer heat flux.

Thomson scattering will also be used to measure plasma conditions to determine the heat conductivity and spatial temperature profile

The Thomson-scattering volume will be moved along the target normal to measure *Q*_{SH}.

The Landau damping of EPW's is sensitive to the heat flux by introducing a correction term to the electron distribution function

Thomson scattering makes it possible to probe various phase velocities to measure differences in Landau damping.

E23707

Differences in Landau damping result in varying amplitudes of Thomson scattering from IAW's and EPW's

Experiments will measure differences in Thomsonscattered amplitude to infer heat flux.

E23708

Simultaneous measurements of the Thomsonscattered amplitudes of EPW and IAW features will be used to infer the heat flux

UR

Two-dimensional hydrodynamic simulations predict the locations along the target normal that probe the appropriate values of heat flux

Electron distribution functions

W. Rozmus et al., Bull. Am. Phys. Soc. 58, 26 (2013).

Summary/Conclusions

Upcoming experiments on OMEGA will use Thomson-scattering (TS) spectra to measure heat flux in coronal plasmas

- Heat flux in plasmas alters electron distribution functions, which affect Landau damping of ion-acoustic waves (IAW's) and electron plasma waves (EPW's)
- Thomson scattering is sensitive to changes in Landau damping and will provide a measurement of heat flux
- Local plasma conditions obtained from Thomson scattering will be used to calculate the Spitzer–Härm (SH) heat flux
- The heat flux obtained from both methods will test the validity of SH in the corona

