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Measurements of alpha heating are developed and used  
to determine the yield amplification caused by alphas  
and the requirements for ignition

Summary

TC11550

•	 Alpha heating is estimated in two different ways using the Lawson 
parameter and the fractional alpha energy

•	 National Ignition Facility (NIF) shot N140120 exhibits an ~2.5× 
amplification of the neutron yield caused by alpha heating and  
a no-burn Lawson parameter of ~0.65

•	 Options for ignition: higher in-flight aspect ratios (IFAR’s), 
improved yield-over-clean (YOC), and/or use of adiabat shaping
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Hot-spot evolution (including alpha heating) depends 
almost exclusively on the Lawson ignition parameter

TC11551

•	 The model solves the mass, momentum, and energy conservation equations 
for the hot-spot pressure Pt , temperature Tt , and radius Rt *

•	 Energy conservation: d
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•	 Rewrite energy equation dependent approximately only on |no a
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	*	C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008);
		 P.-Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010);
		 R. Betti et al., Phys. Plasmas 17, 058102 (2010).

Quasi cancellation (~20% error)

Lawson parameter
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|no a is the most useful ignition metric,  
but only |a can be measured
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•	 The no-a ignition parameter is written in terms of the yield (Y) and tR
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•	 The measureable parameter must use quantities with alpha heating
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•	 tR = total areal density in g/cm2

•	 Y = neutron yield in units of 1016 neutrons

•	 MDT = unablated DT mass in mg

	 R. Betti et al., Phys. Plasmas 17, 058102 (2010).
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The yield-enhancement curves are used to measure  
both the yield enhancement caused by alphas  
and the no-alpha Lawson parameter
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*In general agreement with B. Spears’ (LLNL) simulation results for NIF-ID point design target:
 B. Spears and J. Lindl, “Ignition Metrics and Their Role in Setting Specifications and Evaluating Progress Toward Ignition 
on the NIF,” LLNL, Livermore, CA, UCRL report under review (2014).; P. Patel et al., Bull. Am. Phys. Soc. 58, 193 (2013).
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Another way of inferring alpha heating is through  
the fractional alpha energy deposited in the hot spot
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•	 Eabs i=a a × Yield × 3.5 MeV = absorbed alpha energy in the hot spot

•	 ia á 0.9 – .1 3 4
1

160
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•	 Pressure and volume are inferred from observables according  
to C. Cerjan et al.**

	*	O. N. Krokhin and V. B. Rozanov, Sov. J. Quantum Electron. 2, 393 (1973).
*	*	C. Cerjan, P. T. Springer, and S. M. Sepke, Phys. Plasmas 20, 056319 (2013).
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fa can be directly inferred from experimental observables.
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The yield enhancement is an almost unique function  
of the fractional alpha energy fa
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Alpha-heating analysis of NIF high-foot (HF)  
shot N140120
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•	 Yield = 9.2 × 1015, tR = 0.8 g/cm2, MDT = 0.18 mg,  
burnwidth = 161 ps, T = 4.9 keV, and Rhs = 35.2 nm*

•	 The |a analysis gives |a á 1, a yield amplification of 2.5, 
and |no a = 0.65

•	 The fa analysis gives fa á 0.38, a yield amplification  
of 2.7, and |no a = 0.67

*P. K. Patel, Lawrence Livermore National Laboratory, private communication (2014);
 O. A. Hurricane and H. S. Park, presented at the IDI Web Meeting, February 2014. 

Both the |a and the fa analyses give similar results.
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Options for ignition: higher IFAR, improved YOC,  
and/or use of adiabat shaping

TC11559

•	 ia fraction of absorbed alphas á 0.7

•	 Sadiabat = adiabat shaping factor = innera a

•	 Best shot to date " |HF á 0.65 (| = 1 for ignition)

•	 Options for achieving ignition

–	 improve YOC (shape, IFAR, Sadiabat) but YOC is already high

–	 increase ia (compressed B field at 0.5 Gauss?)*

–	 increase IFAR (but YOC may go down)

–	 use adiabat shaping " increase Sadiabat

~ YOC IFAR SE P. . . .
no kin abl

to .
adiabat

0 37 0 4 0 4 0 6 0 6| ia a

 *L. J. Perkins et al., Phys. Plasmas 20, 072708 (2013);
  G. Logan, Lawrence Berkeley National Laboratory, private communication (2014).
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Direct-drive simulations of the high foot (HF) show  
a possible ignition path with adiabat shaping (AS)  
and modest IFAR, CR, and pulse-length increase

TC11767

•	 Ignition pulse with AS is 13% longer

•	 IFAR at 2/3 radius is 20% higher  
in ignition pulse with AS

•	 Expected similar ablation-front 
growth factors

•	 Convergence ratio (CR) is 15% 
higher in ignition pulse with AS
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Summary/Conclusions

Measurements of alpha heating are developed and used  
to determine the yield amplification caused by alphas  
and the requirements for ignition

•	 Alpha heating is estimated in two different ways using the Lawson 
parameter and the fractional alpha energy

•	 National Ignition Facility (NIF) shot N140120 exhibits an ~2.5× 
amplification of the neutron yield caused by alpha heating and  
a no-burn Lawson parameter of ~0.65

•	 Options for ignition: higher in-flight aspect ratios (IFAR’s), 
improved yield-over-clean (YOC), and/or use of adiabat shaping
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