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Magnetic collimation results in a quasi-neutral 
electron–positron beam

Summary

•	 A loop-current magnetic lens is used to collimate 
the electron–positron beam

 •	Different particle energies are collimated by varying 
the field strength and the target-to-lens distance

•	 Electron and positron beams can be separated 
by a coil translation or tipping and tilting
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Positrons are collimated using an axisymmetric 
magnetic field

TC11738

•	 A divergent positron source is produced by illuminating a high-Z 
target with a short-pulse laser

•	 A focal length is defined as the distance between the target and coil 
that yields a collimated beam
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*H. Chen et al., Phys. Rev. Lett. 102, 105001 (2009).
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A focal length can be determined for an axisymmetric 
magnetic field as a function of energy

TC11107a

•	 Focal length can be expressed in terms of particle energy

*H. Chen et al., Phys. Plasmas 21, 040703 (2014).
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Positron collimation acts as an energy selector; 
electrons are collimated the same as positrons.
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MIFEDS provides an axially symmetric magnetic field 
capable of positron collimation

•	 MIFEDS generates tens of kiloamps

MIFEDS has been successfully deployed on the 
OMEGA, OMEGA EP, and Titan Laser Systems.
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Positron beam collimation produces a nearly 
quasi-neutral electron–positron plasma

TC11610

•	 Positron and electron density is increased roughly 
two orders of magnitude at peak energy

H. Chen et al., Phys. Rev. Lett. 21, 040703 (2014).
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Collimation is observed at higher positron energy than 
predicted and is accounted for by a radial electric field

TC11111a
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•	 A charge imbalance arises from uncollimated high-energy electrons 

•	 For an electron density ~1014 and a radius of 5 mm, we can estimate 
an electric field of ~3 MV/mm
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Positron collimation was observed on some shots 
at the Titan Laser Facility

TC11740

•	 Strong collimation was achieved for lower-energy particles 
produced by Titan
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Not all shots demonstrated the same collimation

TC11741

•	 Using the same material, magnetic-field strength, and target-
to-coil distance, the same positron signal was not reproduced
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Coil tip/tilt and translation can account for positrons 
being deflected away from the detector.
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Target and coil misalignment causes deflection off-axis 
and charge-species separation

TC11611a

•	 A small shift off-axis can be represented in the canonical 
momentum equation as

M qr A m v r00 0 3c= =z z z^ ^h h

•	 This means there is some nonzero vz at infinity, causing 
particles to drift; the sign of vz depends on q, which 
causes charge separation

FSC



Collimation remains the dominant effect close to the coil, 
resulting in two collimated charge-separated beams

TC11742

•	 Separate electron and positron beams are generated when the 
magnetic lens is positioned at the focal length and tilted by 2° 
in the y–z plane
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Summary/Conclusions

Magnetic collimation results in a quasi-neutral 
electron–positron beam

•	 A loop-current magnetic lens is used to collimate 
the electron–positron beam

 •	Different particle energies are collimated by varying 
the field strength and the target-to-lens distance

•	 Electron and positron beams can be separated 
by a coil translation or tipping and tilting

FSC


