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Measurements of the coronal plasma density profile 
deviate from hydrodynamic simulations at large 
density scale lengths

Summary

•	 Coronal plasma density profiles are measured up to 1021 cm–3 
using a novel diagnostic—angular filter refractometry (AFR)

•	 Hydrodynamic simulations predict larger densities and longer 
scale lengths (Ln) late in time for flat targets and for larger- 
diameter spherical targets

•	 The discrepancies in the plasma density profiles appear
	 to be correlated to the presence of significant two-plasmon–

decay (TPD) generated hot electrons
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Coronal plasma density measurements are important to 
accurately predict the laser–plasma interaction
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Laser–plasma instabilities can change the absorption profile and 
therefore hydrodynamic profile; this is a feedback process that requires 
experimental measurement of the density profile.
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The dependence of laser–plasma instabilities 
on the plasma scale length is isolated by using 
targets of varying radii
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Over the range of experiments, the 
quarter-critical density scale length was 
varied by more than a factor of 3.
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OMEGA EP experiments were designed to measure 
the plasma density scale length and the hot-
electron production

351-nm, 2-ns square, 9-kJ, 1-mm spot (DPP*)
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ẑ

Mo
CH

Angular filter

refractometer (AFR)

*Distributed phase plate



The presence of two-plasmon decay (TPD) is observed 
through measuring the fraction of laser energy 
converted to hot electrons (fhot)
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• f/25 diverging beam
• Diameter = 3.3 mm

• ±50-ps accuracy
• ±20-ps post-shot measurement

• 4~ (263 nm) ~ 20 mJ
• Pulse width = 10 ps

• 5-nm resolution
• 3.7 × 3.7-mm
 field of view

3

2

1

1 2 3
Space (mm)

S
p

ac
e 

(m
m

)

Target chamber center
illumination Diagnostic table

Timing

Nd:glass laser

The OMEGA EP 4~ probe laser system was used 
to measure the plasma density profiles
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Angular filter refractometry (AFR) maps the refraction
of the probe beam at target chamber center (TCC)
to contours in the image plane
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Angular filter refractometry (AFR) maps the refraction 
of the probe beam at target chamber center (TCC)
to contours in the image plane
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The edges of the rings map a certain refraction 
angle to the spatial location in the object plane.
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The diagnostic is calibrated using a negative lens 
that has a well-defined i(x,y)

The association of these angles with the specific angular filter bands 
can be applied to a plasma to measure its refraction profile.
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The experimental angular filter refractometry images are 
analyzed using the calibration angles

Processing the experimental angular refactometry images 
creates a contour map of the refraction angle.
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The plasma density profile can be determined  
from the refractive contour map

The density has an error of ±15%.
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The temporal evolution of the plasma density profile 
of UV-irradiated planar targets is illustrated using
the angular filter refractometer
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Analysis of the AFR images produces 
a 2-D density profile
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DRACO 2-D hydrodynamic simulations were run 
with a flux limiter of 0.06
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2-D DRACO Experimental
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DRACO 2-D hydrodynamic simulations were run 
with a flux limiter of 0.06
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The simulated density profiles show good agreement 
with the measured profiles at early times
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At later times, the simulations predict larger densities 
and scale lengths as compared to the measurements
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At later times, the simulations predict larger densities 
and scale lengths as compared to the measurements
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The plasma expansion from UV-irradiated spheres
of varying radii was studied using the AFR diagnostic
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The plasma expansion is more planar as the target 
diameter is increased
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For small spheres (short scale lengths) and late times (1.5 ns),
hydrodynamic simulations are in good agreement with
the measurements.
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As the target diameter is increased, the hydrodynamic 
simulations predict higher densities and longer scale 
lengths compared to measurements
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Both experimental configurations (time and radial series) show 
discrepancies with simulations as the scale length increases.
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In both configurations, these discrepancies arise 
when hot electrons are prevalent

E22572

0.0
150

200

250

300

350

400

450

500

0.5

UV drive

1.0

Time (ns)

Planar targets

1.5 2.0 2.5

L n
 (
n

m
) 

(1
02

1  
cm

–3
)



0.0
A

cc
u

m
u

la
te

d
 f

h
o

t (
%

)
0.4

0.8

1.2

1.6

2.0

2.4

150

200

250

300

350

400

450

500

L n
 (
n

m
) 

(1
02

1  
cm

–3
)

0.0 0.5

UV drive

1.0

Time (ns)

Planar targets

1.5 2.0 2.5

E22572a

In both configurations, these discrepancies arise 
when hot electrons are prevalent
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In both configurations, these discrepancies arise 
when hot electrons are prevalent
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Summary/Conclusions
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Measurements of the coronal plasma density profile 
deviate from hydrodynamic simulations at large 
density scale lengths

•	 Coronal plasma density profiles are measured up to 1021 cm–3 
using a novel diagnostic—angular filter refractometry (AFR)

•	 Hydrodynamic simulations predict larger densities and longer 
scale lengths (Ln) late in time for flat targets and for larger- 
diameter spherical targets

•	 The discrepancies in the plasma density profiles appear
	 to be correlated to the presence of significant two-plasmon–

decay (TPD) generated hot electrons


