Half-Harmonic Images and Spectra Point Toward Localized, Multibeam Two-Plasmon–Decay Instability

W. Seka University of Rochester Laboratory for Laser Energetics 54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

ω /2 images and spectra from implosion experiments indicate localized multibeam two-plasmon–decay (TPD) instability

- On-target laser light nonuniformity and $\omega/2$ images indicate TPD is driven in localized areas
- The onset of the absolute TPD instability is observed at the center of six beams in a hex configuration
- T_e measurements using the sharp, red-shifted $\omega/2$ feature start at LILAC predictions and then exceed them
- The data are consistent with localized temperature islands near $n_c/4$ exceeding the average by 10% to 20%, and entailing $n_c/4$ surface nonuniformities

D. H. Edgell, D. H. Froula, J. Katz, J. F. Myatt, J. Zhang, R. W. Short, D. T. Michel, A. V. Maximov, and V. N. Goncharov

University of Rochester Laboratory for Laser Energetics

Refraction limits $\omega/2$ images to a horizon determined by the Landau cutoff

LL

$\omega/2$ images taken at the center of a hex port are consistent with expectations based on ray tracing

In 1985* $\omega/2$ spectra were found to contain a valuable T_e measurement feature

The original interpretation was based on single-beam absolute TPD instability.

Experiments in 2003 established that the TPD instability was a multibeam instability

The 1985 results are consistent with four-beam-driven TPD.

The sharp red-shifted $\omega/2$ spectral feature is most easily observed when viewed at the center of six beams

 $\Delta \lambda_{nm} = 4.4 \times 10^{-3} T_{e,keV}$

Measured T_e starts at hydrodynamic predictions but then exceeds them by up to 20%.

The threshold for the absolute TPD instability corresponds closely to that predicted by theory*

- $\eta = L_{n,\mu m} I_{14} / (230 T_{e,keV})$
- Experimental thresholds are within 10% of predictions using six-beam overlapped intensity**

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

Because of refraction, $\omega/2$ spectra taken through the focusing lenses can only see the absolute TPD instability caused by four beams

UR

TPD onset and T_e vary across the target surface indicating the existence of elevated T_e islands

Coronal electron temperature islands imply distorted density contours consistent with $\omega/2$ images.

Three-dimensional convective TPD gain calculations* show significant multibeam gain for large- and small-*k* | decays

Six beams, polarization smoothing

*R. W. Short, TO5.00006, this conference;

for more on common wave gain: D. T. Michel, YI2.00002, this conference.

 ω /2 images and spectra from implosion experiments indicate localized multibeam two-plasmon–decay (TPD) instability

- On-target laser light nonuniformity and $\omega/2$ images indicate TPD is driven in localized areas
- The onset of the absolute TPD instability is observed at the center of six beams in a hex configuration
- T_e measurements using the sharp, red-shifted $\omega/2$ feature start at LILAC predictions and then exceed them
- The data are consistent with localized temperature islands near $n_c/4$ exceeding the average by 10% to 20%, and entailing $n_c/4$ surface nonuniformities