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SummarySummary

The use of high-Z ablators in direct-drive implosions  
is promising

•	 Cryogenic targets using ablators with a Z higher than plastic  
have higher two-plasmon–decay (TPD) intensity thresholds, 
decreasing the shell preheat caused by hot electrons 

•	 Hydrodynamic simulations using ablators ranging from carbon  
to silicon show similar Rayleigh–Taylor (RT) instability growth

•	 A multilayer target, designed for sub-MJ shock ignition on the NIF, 
employs a graded-Z ablator and exhibits slightly improved stability  
in comparison with plastic-ablator targets
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High-Z ablators are expected to reduce the hot-electron 
preheat caused by TPD instability
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**A. Simon et al., Phys. Fluids 26, 3107 (1983). 
**R. Betti, JO4.00005, this conference.
**J. Myatt, TO5.00005, this conference.

High-Z materials increase the intensity threshold of the TPD instability.

•	 The TPD growth rate* is 
.
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High-Z ablator targets exhibit a double ablation front*  
and a classical interface  
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•	 Modulations of density 
grow exponentially  
with a linear growth rate** 
given by
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T
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Twith

**S. Fujioka et al., Phys. Plasmas 11, 2814 (2004).
**H. Takabe et al., Phys. Fluids 28, 3676 (1985).

•	 The thermal front is almost fully stabilized by mass ablation

•	 The RT instability grows almost classically at the radiative front  
and the DT–SiO2 interface
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Hydrodynamic stability is studied for different high-Z 
ablators ranging from carbon to silicon 
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Peak laser intensity:  
9 × 1014 W/cm2 

Vimp = 390 km/s 
a ~ 2.5
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Single-mode simulations show a slightly lower  
RT instability growth factor for high-Z ablators
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•	 During the linear phase, the RT instability grows as ect,  
where c is the growth rate and ct is the number of e foldings
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High-Z ablators exhibit similar perturbations of the shell 
during the acceleration phase
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Imprint simulations with , < 200 at R = R0/2

•	 The plateau length DP is longer for higher-Z material

•	 High-, modes develop at the radiative front
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A high-Z ablator target has been designed  
for shock ignition on the NIF at sub-MJ energies 
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The RT growth is mitigated by finite density gradients 
generated by multiple layers of doped plastic
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Using graded doping of plastic layers reduces the RT growth  
in a double-ablation-front structure.
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The high-Z ablator design exhibits a slightly improved 
stability over the plastic ablator target 
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Imprint simulations with , < 200 at the end of the acceleration phase
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Summary/Conclusions

The use of high-Z ablators in direct-drive implosions  
is promising

•	 Cryogenic targets using ablators with a Z higher than plastic  
have higher two-plasmon–decay (TPD) intensity thresholds, 
decreasing the shell preheat caused by hot electrons 

•	 Hydrodynamic simulations using ablators ranging from carbon  
to silicon show similar Rayleigh–Taylor (RT) instability growth

•	 A multilayer target, designed for sub-MJ shock ignition on the NIF, 
employs a graded-Z ablator and exhibits slightly improved stability  
in comparison with plastic-ablator targets


