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SummarySummary

High-Z ablators offer a possible solution for laser–
plasma instabilities in direct-drive inertial confinement 
fusion (ICF) 

•	 There is strong experimental and theoretical evidence that hot-electron 
production is greatly reduced in high-Z ablators such as Si, SiO2

•	 High-Z ablator targets must be designed with optically thick layers  
to prevent radiation preheat of the fuel

•	 OMEGA implosion experiments require glass/silicon-coated CH shells. 
The two-plasmon decay (TPD) is below threshold for glass ablators  
on OMEGA

•	 Shock ignition targets for the NIF using glass/silicon ablators can be 
designed below the linear threshold during the assembly pulse

*For 2-D hydrodynamics of high-Z ablators see, Lafon, JO4.00003, this conference.

FSC



Collaborators

R. Nora, M. Lafon, J. F. Myatt, C. Ren, J. Li, R. Yan, A. V. Maximov,  
D. H. Froula, W. Seka, K. S. Anderson, R. Epstein, J. A. Delettrez,  

S. X. Hu, P. M. Nilson, and W. Theobald

Laboratory for Laser Energetics
University of Rochester

V. A. Smalyuk 

Lawrence Livermore National Laboratory



High-Z reduction of TPD is seen in experiments  
and simulations
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•	 Hard x-rays (HRX) reduced  
by more than 40× in glass with 
respect to plastic at 1015 W/cm2* 

•	 Confirmed:

–	 on multiple materials in planar 
targets**

–	 in particle-in-cell (PIC)
simulations†

–	 in quasilinear Zakharov model 
simulations‡

**V. A. Smalyuk et al., Phys. Rev. Lett. 104, 165002 (2010).
**D. H. Froula et al., “Direct-Drive Laser-Plasma Interactions Experiments,” to be published  
**in Plasma Physics and Controlled Fusion.
*†R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012); J. Li, TO5.00003, this conference.
*‡J. F. Myatt, TO5.00005, this conference.
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High laser absorption and 1-D areal density were
measured in thick glass–shell implosion experiments 

TC10316 *V. A. Smalyuk et al., Phys. Rev. Lett. 104, 165002 (2010).
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•	 Measured areal density = 140 to 150 mg/cm2

•	 Predicted areal density = 140 to 170 mg/cm2

•	 Areal density modulation D(tR)/tR ≤ 4% (from four directions)
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Implosion experiments with thick glass shells  
show highly truncated neutron rates
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A density jump at the D2–SiO2 interface likely drives
short-wavelength mixing leading to burn truncation
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The measured yield is consistent with the predictions 
of the free-fall model for mix-front penetration and clean 
hot-spot volume 
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An assessment of the hydrodynamics of high-Z 
ablators requires hydro-equivalent implosions 
with the same gas–shell interface 

TC10320

Hydro-equivalency " same “payload” velocity and adiabat, and SiO2-coated  
plastic for similar Rayleigh–Taylor (RT) growth at classical interface.
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Compression experiments of warm OMEGA targets 
require thick-SiO2 and a Si-doped CH layer to prevent 
radiation preheat of the CH payload

TC10321

Thin-SiO2 ablator
	 •	 SiO2 is at 1/4 critical
	 •	 tR = 90 mg/cm2

Thick-SiO2 ablator
	 •	 SiO2 is at 1/4 critical
	 •	 tR = 230 mg/cm2
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The TPD cannot be driven above the linear threshold
in SiO2-ablator targets on OMEGA at 1015 W/cm2
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Because of the large scale length at quarter critical in 
NIF targets, designs below linear TPD threshold may be 
difficult to achieve
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Shock-ignition, 700-kJ NIF SiO2 targets can be designed to 
be almost fully below threshold during the assembly pulse
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PIC simulations show that hot-electron production
in Si is negligible even at the end of the assembly pulse

TC10325 *See J. Li et al., TO5.00003, this conference.
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Summary/Conclusions
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High-Z ablators offer a possible solution for laser–
plasma instabilities in direct-drive inertial confinement 
fusion (ICF) 

•	 There is strong experimental and theoretical evidence that hot-electron 
production is greatly reduced in high-Z ablators such as Si, SiO2

•	 High-Z ablator targets must be designed with optically thick layers  
to prevent radiation preheat of the fuel

•	 OMEGA implosion experiments require glass/silicon-coated CH shells. 
The two-plasmon decay (TPD) is below threshold for glass ablators  
on OMEGA

•	 Shock ignition targets for the NIF using glass/silicon ablators can be 
designed below the linear threshold during the assembly pulse

*For 2-D hydrodynamics of high-Z ablators see, Lafon, JO4.00003, this conference.


