High-Intensity Shock-Ignition Experiments
in Planar Geometry
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100-Mbar shocks are generated by an ~1.5 x 101° W/cm?2
spike pulse in a long-scale-length plasma

FS€

E20448

UR

LLE

Shock ignition requires ~100’s of Mbar of pressure
and hot-electron temperature <150 keV

Hot-electron temperatures up to 70 keV were measured
at 1.5 x 101° W/cm?2

~2% of the spike beam energy is converted into hot electrons
and up to ~7% of the laser energy is backscattered

2-D DRACO simulations reproduce the shock dynamics
well over a range of spike intensities

First demonstration of a 100-Mbar laser-driven shock
at shock-ignition-relevant conditions.
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Shock ignition uses a non-isobaric fuel assembly and
promises lower laser energy for achieving ignition*
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e Critical issues for shock ignition

— demonstrate hot-electron temperatures of <150 keV
generated by spike

— demonstrate ~300- to 400-Mbar spike-generated pressure

TC8918b R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).



A laser—plasma interaction experiment was performed
in planar geometry with overlapping beams

uURr
FS€E LLE
40 um
CH 30 um 138 um 15 | | | I I
Low ')"0 /quartz
intensity Cone 1
v rd = NE Cone 2
] @ 5 10
_ High . VISAR 2=
intensity SOP S5 Cone 3
HE
Laser <« 2 a =
backscatter / l
0 - i
17.5 keV
Mo KO( Hard 0 1 2
X rays Time (ns)

* Phase plates and DPR’s with ~900 um focal spots were used
in plasma-generating beams (cone 2 and cone 3)

* Phase plates with an ~600-um focal spot were used in six
high-intensity beams (cone 1)
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The number of hot electrons and Tyt increase
with spike laser intensity
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* Epot from measured Mo K, yield and Monte Carlo simulations
of electron stopping’

* Thot from measurement with time-resolved four-channel hard
x-ray detector?
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The backscattered laser energy increases
with spike laser intensity
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e Only the backscattered energy (SRS + SBS) in the lens
was quantified

e Sidescattering was observed, but not quantified

E20450



The shock propagation in quartz was observed
with streaked optical pyrometry and VISAR*
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E. Miller et al., Rev. Sci. Instrum. 78, 034903 (2007).
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2-D DRACO simulations show a spherical, decaying
shock generated by the high-intensity spike
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Both the shock breakout into the quartz layer
and the rear are reproduced well in the simulations
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2-D DRACO simulations reproduce well the shock
dynamics over a range of spike intensities
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The agreement of measured and simulated shock-breakout
times is better than 6%.
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The excellent agreement between experiment
and simulations gives confidence in the simulated
peak pressure
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2-D hydrodynamic DRACO simulations predict an initial
plasma pressure of 100 Mbar for ~1.5 x 1015 W/cm?2
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Summary/Conclusions

100-Mbar shocks are generated by an ~1.5 x 101° W/cm?2
spike pulse in a long-scale-length plasma
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Shock ignition requires ~100’s of Mbar of pressure
and hot-electron temperature <150 keV

Hot-electron temperatures up to 70 keV were measured
at 1.5 x 101° W/cm?2

~2% of the spike beam energy is converted into hot electrons
and up to ~7% of the laser energy is backscattered

2-D DRACO simulations reproduce the shock dynamics
well over a range of spike intensities

First demonstration of a 100-Mbar laser-driven shock
at shock-ignition-relevant conditions.




