

W. Theobald University of Rochester Laboratory for Laser Energetics 53rd Annual Meeting of the American Physical Society Division of Plasma Physics Salt Lake City, UT 14–18 November 2011

Summary

100-Mbar shocks are generated by an ~1.5 \times 10¹⁵ W/cm² spike pulse in a long-scale-length plasma

- Shock ignition requires ~100's of Mbar of pressure and hot-electron temperature \lesssim 150 keV
- Hot-electron temperatures up to 70 keV were measured at 1.5 \times $10^{15}\,W/cm^2$
- ~2% of the spike beam energy is converted into hot electrons and up to ~7% of the laser energy is backscattered
- 2-D DRACO simulations reproduce the shock dynamics well over a range of spike intensities

First demonstration of a 100-Mbar laser-driven shock at shock-ignition-relevant conditions.

M. Hohenberger¹, S. X. Hu¹, K. S. Anderson¹, R. Betti^{1,2}, T. R. Boehly¹, A. Casner³, D. H. Edgell¹, D. E. Fratanduono⁴, M. Lafon⁵, D. D. Meyerhofer^{1,2}, R. Nora^{1,2}, X. Ribeyre⁵, T. C. Sangster¹, G. Schurtz⁵, W. Seka¹, C. Stoeckl¹, and B. Yaakobi¹

¹Laboratory for Laser Energetics and Fusion Science Center, Rochester NY
²Depts. of Mech. Eng. and Physics at the University of Rochester, Rochester NY
³CEA, DAM, DIF, Arpajon, France
⁴Lawrence Livermore National Laboratory, Livermore, CA
⁵Centre Lasers Intenses et Applications, University of Bordeaux
Bordeaux, France

Shock ignition uses a non-isobaric fuel assembly and promises lower laser energy for achieving ignition*

- Critical issues for shock ignition
 - demonstrate hot-electron temperatures of ≤150 keV generated by spike
 - demonstrate ~300- to 400-Mbar spike-generated pressure

A laser–plasma interaction experiment was performed in planar geometry with overlapping beams

- Phase plates and DPR's with ~900 μ m focal spots were used in plasma-generating beams (cone 2 and cone 3)
- Phase plates with an ~600- μ m focal spot were used in six high-intensity beams (cone 1)

The number of hot electrons and T_{hot} increase with spike laser intensity FSC

- E_{hot} from measured Mo K_{α} yield and Monte Carlo simulations of electron stopping¹
- T_{hot} from measurement with time-resolved four-channel hard x-ray detector²

¹B. Yaakobi *et al.*, Phys. Plasmas <u>16</u>, 102703 (2009).

²C. Stoeckl et al., Rev. Sci. Instrum. <u>72</u>, 1197 (2001).

The backscattered laser energy increases with spike laser intensity

UR

- Only the backscattered energy (SRS + SBS) in the lens was quantified
- Sidescattering was observed, but not quantified

The shock propagation in quartz was observed with streaked optical pyrometry and VISAR*

*J. E. Miller et al., Rev. Sci. Instrum. <u>78</u>, 034903 (2007). P. M. Celliers et al., Rev. Sci. Instrum. <u>75</u>, 4916 (2004).

2-D DRACO simulations show a spherical, decaying shock generated by the high-intensity spike

Both the shock breakout into the quartz layer and the rear are reproduced well in the simulations FSE

E20452a

2-D DRACO simulations reproduce well the shock dynamics over a range of spike intensities

LLE

The agreement of measured and simulated shock-breakout times is better than 6%.

The excellent agreement between experiment and simulations gives confidence in the simulated peak pressure

UR

2-D hydrodynamic DRACO simulations predict an initial plasma pressure of 100 Mbar for $\sim 1.5 \times 10^{15} \text{ W/cm}^2$

100-Mbar shocks are generated by an ~1.5 \times 10¹⁵ W/cm² spike pulse in a long-scale-length plasma

- Shock ignition requires ~100's of Mbar of pressure and hot-electron temperature \lesssim 150 keV
- Hot-electron temperatures up to 70 keV were measured at 1.5 \times $10^{15}\,W/cm^2$
- ~2% of the spike beam energy is converted into hot electrons and up to ~7% of the laser energy is backscattered
- 2-D DRACO simulations reproduce the shock dynamics well over a range of spike intensities

First demonstration of a 100-Mbar laser-driven shock at shock-ignition-relevant conditions.