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Performance of cone-in-shell fast-ignition targets 
is studied using hybrid fluid and particle simulations 
of implosion and fast-electron transport
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•	 Implosion of cone-in-shell targets is simulated using the radiation– 
hydrodynamic code DRACO*

•	 The hybrid particle-in-cell (PIC) code LSP** simulates the transport 
of fast electrons to the compressed core

•	 An aluminum cone tip is used to reduce the scattering losses 
of fast electrons

•	 A coupling efficiency of 1% to 4% of the petawatt laser pulse 
energy to the core is inferred from the simulations

•	 A neutron yield increase of 1 to 6 × 107 caused by fast electrons
is predicted

Summary

 *R.B. Radha et al., Phys. Plasmas 12, 056307 (2005). 
**D.R. Welch et al., Phys. Plasmas 13, 063105 (2006).
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Integrated fast-ignition experiments 
with re-entrant cone targets are performed 
at the Omega EP Laser Facilities
FSC
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Future cone tip design

•	 Improved OMEGA EP laser performance is expected

–	 energy EEP = 1.5 to 2 kJ

–	 focal spot R80 = 15 nm

–	 pre-pulse energy Epre = 5 to 10 mJ



Performance of cone-in-shell targets is studied using 
DRACO–LSP integrated simulations
FSC

•	 DRACO*

–	 simulates the implosion in 2-D cylindrically symmetric geometry

–	 uses Eulerian moving-grid scheme, 3-D ray trace, and radiation transport

•	 LSP**

–	 2-D/3-D implicit hybrid-PIC code that calculates the target heating
by fast electrons

–	 coupled to the hydrodynamic code DRACO during the short-pulse interaction***
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    *R.B. Radha et al., Phys. Plasmas 12, 056307 (2005). 
   **D.R. Welch et al., Phys. Plasmas 13, 063105 (2006).
  ***A.A. Solodov et al., Phys. Plasmas 15, 112702 (2008).TC9831



DRACO shows importance of radiation transport
in modeling the implosion
FSC

•	 Cone material absorbs radiation emitted in the corona and thermally expands

•	 Cone can fill up with aluminum plasma if the tip is thinner than 35 nm

0

200

400

–400 0 400

z (nm)

Mass density (g/cm3)

r 
(n

m
)

t = 0

0

100

200

300

–300 0 300

z (nm)

Mass density (g/cm3)

r 
(n

m
)

t = 3 ns

20.0

1.68

0.14

0.01

0.00

t

Al and Au plasma caused
by radiation transport

TC9832



DRACO predicts an asymmetric fuel assembly
with a hot spot facing the cone tip
FSC

•	 tR = 0.48 g/cm2 in –z direction, 85% of 1-D tR

•	 Implosion neutron yield is 108 (4 × 106 in experiments*)

•	 The temperature needs to be reduced by 1.65 in the simulation 
to match the experimental neutron yield

•	 3-D hot-spot mix can reduce the temperature
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Aluminum and gold filling the shell during the implosion 
are compressed into a small region between the cone tip 
and the hot spot 
FSC
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of the cone tip can help to 
collimate fast electrons.



LSP simulates fast-electron transport from the cone tip 
to the core
FSC

•	 Fast electrons are injected at the inner cone-tip surface

•	 OMEGA EP pulse energy EEP = 1.5 kJ is assumed

•	 Sensitivity of core heating and neutron yield increase to variations 
in fast-electron divergence, temperature, and conversion efficiency 
is studied

•	 Recent OSIRIS PIC simulations* of fast-electron generation in the 
OMEGA EP pre-plasma suggest that fast electrons reaching the cone 
tip have

–	 divergence half-angle of ~30°

–	 10% to 20% of the laser pulse energy

–	 wide energy spectrum with 40% below 1 MeV

TC9835 *J. Li et al., this conference.



LSP simulates fast-electron transport and core heating
FSC
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LSP predicts that 6% to 18% of fast-electron energy
is coupled to the core (1% to 4% of the laser energy)
FSC

•	 Assumes 15% to 25% conversion efficiency to fast electrons 
reaching the cone tip
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Neutron-yield increase by 1 to 6 × 107 is predicted
by DRACO/LSP simulations
FSC
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Summary/Conclusions

 *R.B. Radha et al., Phys. Plasmas 12, 056307 (2005). 
**D.R. Welch et al., Phys. Plasmas 13, 063105 (2006).

Performance of cone-in-shell fast-ignition targets 
is studied using hybrid fluid and particle simulations 
of implosion and fast-electron transport

•	 Implosion of cone-in-shell targets is simulated using the radiation– 
hydrodynamic code DRACO*

•	 The hybrid particle-in-cell (PIC) code LSP** simulates the transport 
of fast electrons to the compressed core

•	 An aluminum cone tip is used to reduce the scattering losses 
of fast electrons

•	 A coupling efficiency of 1% to 4% of the petawatt laser pulse 
energy to the core is inferred from the simulations

•	 A neutron yield increase of 1 to 6 × 107 caused by fast electrons
is predicted


