Simulations of Implosion and Core Heating for Integrated Cone-in-Shell Fast-Ignition Experiments on OMEGA

Summary

FSC

Performance of cone-in-shell fast-ignition targets is studied using hybrid fluid and particle simulations of implosion and fast-electron transport

- Implosion of cone-in-shell targets is simulated using the radiationhydrodynamic code DRACO*
- The hybrid particle-in-cell (PIC) code *LSP*** simulates the transport of fast electrons to the compressed core
- An aluminum cone tip is used to reduce the scattering losses of fast electrons
- A coupling efficiency of 1% to 4% of the petawatt laser pulse energy to the core is inferred from the simulations
- A neutron yield increase of 1 to 6×10^7 caused by fast electrons is predicted

K. S. Anderson, A. Shvydky, W. Theobald, R. Betti, J. F. Myatt, and C. Stoeckl

> University of Rochester Laboratory for Laser Energetics and Fusion Science Center for Extreme States of Matter

Integrated fast-ignition experiments with re-entrant cone targets are performed at the Omega EP Laser Facilities

- Improved OMEGA EP laser performance is expected
 - energy $E_{\rm EP}$ = 1.5 to 2 kJ
 - focal spot R_{80} = 15 μ m
 - pre-pulse energy $E_{pre} = 5$ to 10 mJ

Performance of cone-in-shell targets is studied using DRACO–LSP integrated simulations

- DRACO*
 - simulates the implosion in 2-D cylindrically symmetric geometry
 - uses Eulerian moving-grid scheme, 3-D ray trace, and radiation transport
- LSP**
 - 2-D/3-D implicit hybrid-PIC code that calculates the target heating by fast electrons
 - coupled to the hydrodynamic code DRACO during the short-pulse interaction***

*R.B. Radha et al., Phys. Plasmas 12, 056307 (2005).

^{**}D.R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).

^{***}A.A. Solodov et al., Phys. Plasmas 15, 112702 (2008).

DRACO shows importance of radiation transport in modeling the implosion

UR

- Cone material absorbs radiation emitted in the corona and thermally expands
- Cone can fill up with aluminum plasma if the tip is thinner than 35 μ m

TC9832

DRACO predicts an asymmetric fuel assembly with a hot spot facing the cone tip **FSE**

- $\rho R = 0.48 \text{ g/cm}^2 \text{ in } -z \text{ direction}, 85\% \text{ of } 1\text{-}D \rho R$
- Implosion neutron yield is 10^8 (4 × 10⁶ in experiments*)
- The temperature needs to be reduced by 1.65 in the simulation to match the experimental neutron yield
- 3-D hot-spot mix can reduce the temperature

UR

^{*}W. Theobald et al., Phys. Plasmas <u>18</u>, 056305 (2011).

Aluminum and gold filling the shell during the implosion are compressed into a small region between the cone tip and the hot spot

LSP simulates fast-electron transport from the cone tip to the core

- Fast electrons are injected at the inner cone-tip surface
- OMEGA EP pulse energy *E*_{EP} = 1.5 kJ is assumed
- Sensitivity of core heating and neutron yield increase to variations in fast-electron divergence, temperature, and conversion efficiency is studied
- Recent OSIRIS PIC simulations* of fast-electron generation in the OMEGA EP pre-plasma suggest that fast electrons reaching the cone tip have
 - divergence half-angle of $\sim 30^{\circ}$
 - 10% to 20% of the laser pulse energy
 - wide energy spectrum with 40% below 1 MeV

FSC

^{*}J. Li et al., this conference.

LSP simulates fast-electron transport and core heating

Simulation for electron temperature *T* = 0.6, divergence half-angle $\theta_{1/2}$ = 35°, conversion efficiency η_L = 0.15

Fast electrons are collimated by magnetic fields generated caused by the resistivity gradients.

LSP predicts that 6% to 18% of fast-electron energy is coupled to the core (1% to 4% of the laser energy)

 Assumes 15% to 25% conversion efficiency to fast electrons reaching the cone tip

Neutron-yield increase by 1 to 6×10^7 is predicted by *DRACO/LSP* simulations

Summary/Conclusions

Performance of cone-in-shell fast-ignition targets is studied using hybrid fluid and particle simulations of implosion and fast-electron transport

 Implosion of cone-in-shell targets is simulated using the radiationhydrodynamic code DRACO*

- The hybrid particle-in-cell (PIC) code *LSP*** simulates the transport of fast electrons to the compressed core
- An aluminum cone tip is used to reduce the scattering losses of fast electrons
- A coupling efficiency of 1% to 4% of the petawatt laser pulse energy to the core is inferred from the simulations
- A neutron yield increase of 1 to 6×10^7 caused by fast electrons is predicted

FSC