Half-Integer Harmonic Images from Spherical Implosions Point Toward Localized, Multi-Beam Two-Plasmon Decay

Angle-of-incidence–limited irradiation nonuniformity in HEX and PENT locations are evident in $3\omega/2$ and $\omega/2$ images

W. Seka University of Rochester Laboratory for Laser Energetics 53rd Annual Meeting of the American Physical Society Division of Plasma Physics Salt Lake City, UT 14–18 November 2011

Images of the $3\omega/2$ and $\omega/2$ emission from implosion experiments identify details of the two-plasmon-decay (TPD) processes

- $3\omega/2$ and $\omega/2$ images are consistent with driving common waves in HEX and PENT ports on OMEGA
- Comparison of on-target laser-light nonuniformity and $3\omega/2$ and $\omega/2$ images allows for inferences on TPD driven in localized areas
- $3\omega/2$ emission can potentially be used to explain observed discrepancies between scattered-light measurements and *LILAC* predictions

I. V. Igumenshchev, D. H. Edgell, D. H. Froula, J. F. Myatt, R. W. Short, V. N. Goncharov, and A. V. Maximov

University of Rochester Laboratory for Laser Energetics

At overlapped intensities of $<4 \times 10^{14}$ W/cm² the LILAC predictions for scattered light are within 2% of the time-integrated measurements

Time-resolved scattered-light spectra for high-intensity implosions are consistent with significant energy loss to TPD plasmons

Multibeam TPD interaction imposes symmetry restrictions and favors HEX and PENT locations on OMEGA

Assuming multibeam TPD, ray tracing with realistic plasma conditions is used to find TPD locations

Theory limits multibeam TPD growth to a beam angle of $\leq 40^{\circ}$

HEX and PENT locations on OMEGA are naturally favored for multibeam TPD interaction

Limiting local beam angles to <35° reveals the irradiation nonuniformity for otherwise optimum illumination uniformity

Changing the target illumination can significantly change the location of likely TPD

The structure observed in $3\omega/2$ images is consistent with TPD operating in well-localized regions

The structure observed in $3\omega/2$ images is consistent with TPD operating in well-localized regions

$\omega/2$ images are dominated by refraction and can be understood using ray tracing

Different illumination conditions lead to distinct changes in $\omega/2$ images

Different illumination conditions lead to distinct changes in $\omega/2$ images

Summary/Conclusions

Images of the $3\omega/2$ and $\omega/2$ emission from implosion experiments identify details of the two-plasmon-decay (TPD) processes

- $3\omega/2$ and $\omega/2$ images are consistent with driving common waves in HEX and PENT ports on OMEGA
- Comparison of on-target laser-light nonuniformity and $3\omega/2$ and $\omega/2$ images allows for inferences on TPD driven in localized areas
- $3\omega/2$ emission can potentially be used to explain observed discrepancies between scattered-light measurements and *LILAC* predictions