Polar-Drive Designs for OMEGA

P. B. Radha University of Rochester Laboratory for Laser Energetics 53rd Annual Meeting of the American Physical Society Division of Plasma Physics Salt Lake City, UT 14–18 November 2011

Improved target performance in OMEGA polar drive (PD) experiments can be obtained with custom beam profiles

- Current triple-picket low-adiabat, high-convergence PD OMEGA implosions result in a 29±10% yield and a bang time delayed by ~140 ps relative to symmetric drive
- This reduction in target performance is primarily due to reduced implosion velocity in PD relative to symmetric drive
- Optimized phase plate designs can increase implosion velocity, improving the yield relative to symmetric drive to 75% and reduce the delay in bang time to ~25 ps

F. J. Marshall, T. R. Boehly, T. J. B. Collins, R. S. Craxton, R. Epstein,
V. N. Goncharov, P. W. McKenty, J. A. Marozas, R. L. McCrory,
D. D. Meyerhofer, T. C. Sangster, A. Shvydky, and S. Skupsky

University of Rochester Laboratory for Laser Energetics

J. A. Frenje and R. D. Petrasso

Plasma Fusion Science Center Massachusetts Institute of Technology

Polar drive* enables direct-drive experiments in the x-ray-drive configuration

- Oblique irradiation near the equator is at lower densities $(n = n_{crit} \times \cos^2 \theta_{inc})$
 - nonradial beams
 - reduced absorption
 - reduced hydro efficiency
 - lateral heat flow

Uniform target drive with PD irradiation requires increased intensity at the equator to compensate for the oblique irradiation.

40 OMEGA beams emulate the 48-quad (192-beam) NIF configuration

OMEGA PD configuration NIF configuration Ring 1 Fing 2 Ring 1 Ring 2 Ring 3 Ring 4 Ring 3 Ring 1 Ring 2 • The remaining beams 58.8° ľ3 are used to backlight 42.0° Ring 3 the shell **21.4**° R. S. Craxton et al., Phys. Plasmas <u>12</u>, 056304 (2005). F. J. Marshall et al., J. Phys. IV France 133, 153 (2006). TC7194d

LLE

A high-convergence, triple-picket design is used to study PD-related physics

*F. J. Marshall, PO8.00007, this conference.

**Spect3D – J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).

UR

Yield reduction is primarily caused by reduced implosion velocity

UR

Colors represent different pointing schemes

- Delay in PD bang time is due to reduced coupling and hydro efficiency
- Bang time provides a measure of implosion velocity

•
$$\frac{\delta V_{\text{imp}}}{V_{\text{imp}}} \sim \frac{\delta t_{\text{bang}}}{T_{\text{laser}}} \sim \frac{140 \text{ ps}}{1600 \text{ ps}} \sim 9\%$$

•
$$Y_{1-D} \sim \langle T_i \rangle^{4.7} \sim V_{imp}^{5.9}$$

• A 10% increase in V_{imp} increases Y_{1-D} by nearly a factor of two

A lower super Gaussian order beam profile is necessary for localized control over energy deposited on target

An OMEGA target design that uses similar beam profiles has been designed

*T. Collins, KI3.00002, this conference

Better laser energy coupling (and adequate symmetry) can be achieved with custom beam profiles

Density contours at peak neutron production Ring 1, Ring 2, Ring 3 *µ*m, 10 μm, *µ*m ho (g/cc) z (*µm*) *r* (µm)

Yield ratio (PD/symmetric) = 75%

Improved target performance in OMEGA polar drive (PD) experiments can be obtained with custom beam profiles

- Current triple-picket low-adiabat, high-convergence PD OMEGA implosions result in a 29±10% yield and a bang time delayed by ~140 ps relative to symmetric drive
- This reduction in target performance is primarily due to reduced implosion velocity in PD relative to symmetric drive
- Optimized phase plate designs can increase implosion velocity, improving the yield relative to symmetric drive to 75% and reduce the delay in bang time to ~25 ps