Cryogenic Shock-Ignition Target Designs for **OMEGA**

and University of Rochester Laboratory for Laser Energetics

Salt Lake City, UT 14-18 November 2011

Summary

A new triple-picket design has been optimized for cryogenic shock-ignition targets on OMEGA

- Early shock ignition (SI) targets had a neutron yield over clean (YOC) of ${\sim}12\%$

UR

- A new triple-picket design will facilitate experimental shock tuning
- 1-D LILAC predicts yields of 5 \times 10^{13} and a peak ho R of 450 mg/cm^2
- 2-D DRACO shows good stability to laser imprinting and ice roughness
- New cryogenic implosion experiments will begin early next year

R. Betti, K. S. Anderson, and W. Theobald Laboratory for Laser Energetics and Fusion Science Center University of Rochester

> A. Casner Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)

M. Lafon, X. Ribeyre, and G. Schurtz Centre Laser Intenses et Applications, University of Bordeaux, France

Shock ignition decouples the compression and ignition stages to achieve ignition*

- SI uses thick, slow massive targets which exhibit small in-flight aspect ratios (IFAR's)
- Targets have a reduced susceptibility to Rayleigh– Taylor (RT) instabilities
- The ignitor shock couples additional kinetic energy into the hot spot to achieve ignition
- Performance metrics: areal density and YOC

UR 🔌

FSC

Warm targets have been imploded on OMEGA to test the performance of SI pulse shapes*

*W. Theobald et al., Phys. Plasmas 15, 056306 (2008).

There is no database for cryogenic SI experiments

Shot number	48304	48734
E _{laser} (kJ)	19.3	17.9
Y _n	1.60 × 10 ¹²	1.43 × 10 ¹²
YOC (flux)	9.8%	12.3%
$\left< ho {\it R} ight>_{ m exp}({ m g/cm^2})$		0.205
T _{ion} (keV) (exp)	2.5	1.9
Ice layer (μ m)	0.7	0.9
Target offset (μ m)		10±5

A new triple-picket configuration will provide a better performing and experimentally tunable design*

Switching from a single- to a triple-picket configuration will

- increase the maximum
 UV laser energy on target
- reduce hydrodynamic instabilities
- allow the adiabat to be experimentally tunable

This design still has a lower than optimal ignitor shock strength

*V. N. Goncharov et al., Phys. Rev. Lett. <u>104</u>, 165001 (2010).

The triple-picket design is optimized for the OMEGA constraints of 25 kJ and 25 TW

DRACO simulations of the proposed SI design (25 kJ) shows moderately improved performance

TC9822

A second design (21 kJ) with a stronger shock but weaker drive is also under consideration FSE

Pole (µm)

25 20 Larger Power (TW) contrast 15 ratio 10 5 0 3 0 2 Δ 1 Time (ns)

- Nonpropagating test shot of the previous design predicts a weak ignitor shock
- Reduced but extended drive improves shock strength at the expense of the assembly pulse

LLE ho and $extsf{T}_{ extsf{ion}}$ at bang time 40 ho(mg/cm²) 205 Laser imprint modes 2-98 Ice roughness ~ 2 μ m 137 30 69 20 1 10 0 10 20 30 40 0 Equator (μ m) *LILAC* yield: 1.71×10^{13} **YOC: 74% IFAR: 8** $V_{\rm imp}$: 2.3 × 10⁷ cm/s $ho \dot{R}$: 0.34 g/cm² α_{\min} : 2.0

Summary/Conclusions

A new triple-picket design has been optimized for cryogenic shock-ignition targets on OMEGA

- Early shock ignition (SI) targets had a neutron yield over clean (YOC) of ${\sim}12\%$

UR

- A new triple-picket design will facilitate experimental shock tuning
- 1-D LILAC predicts yields of 5 \times 10^{13} and a peak ho R of 450 mg/cm^2
- 2-D DRACO shows good stability to laser imprinting and ice roughness
- New cryogenic implosion experiments will begin early next year