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Summary

Direct-drive phase plates require precise design to 
achieve the necessary imprint and laser–plasma 
interaction (LPI) mitigation

• Subtangential focusing leads to higher laser absorption

• Hydrodynamic instabilities are enhanced by reduced target 
illumination uniformity

• Bifocal phase plates are being examined to evaluate their 
applicability to OMEGA and NIF experimental platforms
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Laser absorption can be increased by implementing
subtangential focusing 
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Positives

• Decreased refraction

• Reduced crossed-beam 
energy transfer

Negatives

• Enhanced overlap nonuniformity

• Reduced imprint smoothing
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Subtangential-focus experiments are drawn from 
previous OMEGA capsule implosions
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Subtangential-focus experiments showed a relative 
yield improvement at tighter focus but 2× reduction
in yield performance overall
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Defocused phase plates lead to higher levels of imprint 
nonuniformities and lower target performance
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DRACO simulations of an F = 0.8 OMEGA cryogenic 
implosion show degraded target performance
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F = 1.0
• Yield over clean 30%
• tR over clean 92%
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Single-focus phase plates can only straddle 
the desired regions of imprint and LPI control
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Bifocal phase plates, coupled with co-propagation
of spliced pulses, can deliver two-step laser zoom
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• Two-state phase modulation yields efficient energy transfer

• Sensitivity to focal-spot shape and profile is reduced

• Smaller focal spot decreases CBET for the main laser pulse

• Reduced phase gradients lower laser-damage probability

Main pulse
Picket
pulse

Bifocal
DPP

1

0
0 3 6 9 12 15

Time (ns)

P
o

w
er

 p
er

b
ea

m
 (

T
W

)

Pickets Target Main



Two-step zooming can provide both imprint and LPI
mitigation while maintaining target performance
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Summary/Conclusions

Direct-drive phase plates require precise design to 
achieve the necessary imprint and laser–plasma 
interaction (LPI) mitigation

• Subtangential focusing leads to higher laser absorption

• Hydrodynamic instabilities are enhanced by reduced target 
illumination uniformity

• Bifocal phase plates are being examined to evaluate their 
applicability to OMEGA and NIF experimental platforms


