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Two-Dimensional Analysis of Crossed-Beam Energy 
Transfer (CBET) in Direct-Drive ICF Implosions
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Crossed-beam energy transfer (CBET) manifests itself 
as increased scatter in rings surrounding the beam axes

TC9756

• The CBET effect increases scattered light through stimulated Brillouin 
scattering (SBS) of outgoing rays that remove energy from incoming 
high-energy rays

• The CBET effect improves agreement of hydrocodes with experiment

• The 2-D hydrodynamics code DRACO requires a domain decomposition 
reconfiguration of the 3-D ray trace to handle the CBET modeling

• Integrated CBET modeling in DRACO simulations illustrate the 
3-D nature of scattered-light gain

Summary
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CBET involves electromagnetic (EM)-seeded, 
low-gain SBS sidescattering

E19905d

• EM seed is provided by outer 
parts of beams

• Inner parts of beams transfer 
some of their energy to 
outgoing parts of other beams

• This process reduces  
hydrodynamic drive efficiency

• Reducing the beam size can 
reduce cross-beam energy 
transfer
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CBET is required to match the measured scattered light 
from standard OMEGA direct-drive implosions

E19973d

• The model is implemented in LILAC (1-D hydrocode) 
that calculates the beam-to-beam resonant coupling  
of laser light through the ion-acoustic waves

• The CBET model agrees well with measured bang time
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• A 3-D ASR (2 relative 
directions plus frequency 
shift) is gathered in 
each cell that supports 
propagation

• Propagation region:  
150 × 350 = 52.5 kcells

• 3-D ASR: 203 bins " 
64 kB per cell

The CBET effect is modeled by accumulating the angular 
spectrum representation (ASR) resulting from all laser ports



The memory requirement for the 3-D ASR prohibits 
implementation of CBET in a single domain
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• Propagation region:  
150 × 350 = 52.5 kcells

• 3-D ASR: 203 bins " 
64 kB per cell

• Memory for 3-D ASR:  
3.36 GB per core

– single domain 
DRACO raytrace

TC9858

Modeling the CBET effect will require a domain decomposed raytrace.



Propagation domain
split over number of cores
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Domain decomposition reduces the memory requirement by the 
number of cores used, allowing even higher 3-D ASR resolution

TC9876

• Propagation region:  
150 × 350 = 52.5 kcells

• 3-D ASR: 203 bins " 
64 kB per cell

• Memory for 3-D ASR:  
3.36 GB per core

– single domain 
DRACO raytrace

• Memory for 3-D ASR:  
26.3 MB per core

– domain decomposed 
DRACO 3-D raytrace 
on 128 cores
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The CBET gain peaks on either side of the beam-port 
centers and near Mach 1

TC9759

• The CBET effect in DRACO increases the scattered light
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Without CBET, vrms = 2.6% at 1.3 ns, S59635

Mapping of scattered light fluence
(J/cm2) on an exterior surface

Exterior surface

The time-integrated scattered light collected from a 
simulation without CBET peaks at the centers  
of all the pent’s and hex’s
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Mapping of scattered light fluence
(J/cm2) on an exterior surface
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With CBET, vrms = 1.1% at 1.3 ns, S59635
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The time-integrated scattered light collected from a simulation 
with CBET produces peaks between adjacent ports as a result 
of the rings of scattered light from each port

TC9877



The modal structure changes dramatically  
when CBET modifies the scattered light

TC9878

• Without CBET the scattered 
light peaks at the centers  
of the hex’s and pent’s

– vrms = 2.6%

• With CBET the scattered light 
peaks between adjacent ports

– vrms = 1.1%

– increased scatter results 
in a smoother distribution

– scattered energy  
increases by ~1.8×

Scattered light fluence (J/cm2),
S59635 at t = 1.3 ns
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Summary/Conclusions

Crossed-beam energy transfer (CBET) manifests itself 
as increased scatter in rings surrounding the beam axes

• The CBET effect increases scattered light through stimulated Brillouin 
scattering (SBS) of outgoing rays that remove energy from incoming 
high-energy rays

• The CBET effect improves agreement of hydrocodes with experiment

• The 2-D hydrodynamics code DRACO requires a domain decomposition 
reconfiguration of the 3-D ray trace to handle the CBET modeling

• Integrated CBET modeling in DRACO simulations illustrate the 
3-D nature of scattered-light gain


