Initial Channeling Studies of a Kilojoule-Class Laser in Long-Scale-Length Plasma

S. Ivancic University of Rochester Laboratory for Laser Energetics 53rd Annual Meeting of the American Physical Society Division of Plasma Physics Salt Lake City, UT 14–18 November 2011

Summary

Fast-ignition-relevant channeling experiments on OMEGA EP have been conducted using a 1-kJ, 10-ps pulse incident on a large preformed plasma

• Picosecond time-resolved images of channel formation are obtained by proton radiography in a 60-ps window

UR 🔬

- Focusing at the density 5×10^{18} cm⁻³ in from the target showed the best penetration into the plasma
- No significant energy coupling was observed for focusing positions closer to the target surface
- About 0.5% of short-pulse laser energy was converted into protons (>15 MeV)

W. Theobald, C. Stoeckl, P. M. Nilson, T. C. Sangster, D. D. Meyerhofer, and S. X. Hu University of Rochester Laboratory for Laser Energetics

> L. Willingale University of Michigan

Channeling is one part of a process to deliver localized energy deposition to a compressed core for fast ignition*

Channeling for fast ignition relies on a well-developed understanding of

- channel penetrating velocity
- channel expansion velocity
- residual plasma left in channel

^{*}M. Tabak et al., Phys. Plasmas <u>1</u>, 1626 (1994).

The beam configuration of OMEGA EP allows a fastignition-relevant channeling experiment to be performed

Time-of-flight dispersion and a filtered stack detector produces a multiframe imaging capability

M. Borghesi et al., Phys. Plasmas <u>9</u>, 2214 (2002).

Focusing the laser deep into the plasma led to beam breakup through filamentation

Orthogonal view

Filaments evident up to 0.1 n_c . Filaments are inhibited on axis.

When the laser focused 1.2 mm in front of the original target surface, a large plasma cavitation was observed to develop over ~20 ps

Orthogonal view

- Nominal focus position at $n_e \sim 5 \times 10^{18}$ cm⁻³
- Super-penetration* studies suggest cavitation depth is sensitive to the plasma density at laser focus

A strong proton signal in the channeling direction was observed indicating energy transport into the dense plasma

This feature was only observed for the 5×10^{18} cm⁻³ focus position.

Transmitted proton beam image

- Filamented beam structure of accelerated protons
- Beam divergence is a function of energy

The channeling beam produces a sheath field on the CH foil rear side, creating a proton beam in the forward direction in excess of 30 MeV

Fast-ignition-relevant channeling experiments on OMEGA EP have been conducted using a 1-kJ, 10-ps pulse incident on a large preformed plasma

• Picosecond time-resolved images of channel formation are obtained by proton radiography in a 60-ps window

UR 🔬

- Focusing at the density 5×10^{18} cm⁻³ in from the target showed the best penetration into the plasma
- No significant energy coupling was observed for focusing positions closer to the target surface
- About 0.5% of short-pulse laser energy was converted into protons (>15 MeV)

Future experiments will take advantage of the optical probe beam being developed for OMEGA EP

UR 🔌

The optical collection system will provide access to high-density laser-produced plasmas An *f*/4 system can measure long-pulse plasmas $(L_x/L_z \sim 2)$: $n_e = 10^{21}$ cm⁻³ • prepulse plasmas $(L_x/L_z \sim 6)$: $n_e = 4 \times 10^{20}$ cm⁻³ 10 **Refraction outside** *f***/**4 Scale length (L_x/L_z) 8 **Prepulse plasmas** 6 f/4 4 Long-pulse plasmas 2 Solid target 0 **10**²¹ 1022 1020 Electron density (cm⁻³) An f/4 system will provide access to highly refractive plasmas.

The focusing position of the short-pulse laser beam shows sensitivity to the electron density onto which it is focused

