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Crossed-beam energy transfer (CBET) can reduce

the performance of direct-drive ICF implosions i

LLE

e CBET is observed in time-resolved reflected-light spectra as
a suppression of red-shifted light during the main laser drive

 CBET extracts energy from the center-beam incoming light
and transfers it to outgoing light, reducing the laser absorption
and hydrodynamic efficiency
e CBET can be reduced
— using beams smaller than the target diameter

— using laser beams with two or more colors

Mitigation strategies are being tested on OMEGA.
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Scaled-down implosion experiments on OMEGA are

used to validate direct-drive NIF implosion designs
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Symmetic NIF ignition design* OMEGA targets
(1-D gain = 50)
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TC9858 *V. N. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010).



Experiments on OMEGA have been modeled using
hydrodynamic codes LILAC* and DRACO**
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Radiation transport package
— multi-group diffusion

Equation-of-state package
— SESAME
— QEOS

Laser absorption package

— inverse bremsstrahlung
Hydrodynamic
efficiency

Thermal transport package
— flux-limited transport
— nonlocal transport***

*J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
**B. Radha et al., Phys. Plasmas 12, 032702 (2005).
TC9881 ***V.N. Goncharov et al., Phys. Plasmas 15, 056310 (2008).



Measured bang time is late by ~200 ps,
indicating reduced laser coupling
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Simulations overpredict the
red-shifted scattered light
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Time-resolved scattered-light spectra from a spherical implosion

Center-beam rays
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Simulations overpredict the
red-shifted scattered light
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Time-resolved scattered-light spectra from a spherical implosion

Center-beam rays
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* Blocking the central
portion of the beam in the B';’fe';ed
simulations reproduces
the observed spectrum
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CBET can be responsible for the discrepancy
between experiments and simulations
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B e CBET involves electromagnetic
eam 2 (EM)-seeded, low-gain
Center-beam ray stimulated Brillouin scattering

e EM seed is provided by edge-
_Cross-beam beam light
energy transfer

is spatially limited e Center-beam light transfers

some of its energy
to outgoing light*

* The transferred light bypasses
the highest absorption region
near the critical surface*

CBET reduces laser absorption
and hydrodynamic efficiency.**

*D. H. Edgell et al., Bull. Am. Phys. Soc. 52, 195 (2007);
53, 168 (2008); 54, 145 (2009).
E19905¢ **1. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
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The CBET numerical algorithm considers pairwise
interactions of light rays
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: dI; _
Probe i ray d—Q’ = — Zili X Lii1
N L1 = I % ezﬂL k2 /ncr Xe <1 +xi)
> m2c3 co"’ J1-nging |1+ Xe +X;

- ——
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matching

0,4 = O prope— Dpum p} Three-wave
condition

ka = kprobe kpump

e The CBET model*t is implemented
in LILAC absorption package
assuming spherical symmetry**

*C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
TE. A. Williams et al., Phys. Plasmas 11, 231 (2004).
TC9762 **I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).



An ion-acoustic wave saturation model is required to match

the scattered-light power for intensities I = 4 x 101 W/cm?2
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 The amplitude of ion-acoustic waves is limited
by clamping electron- density fluctuations*

dr; N
40 = 2 F(@aKane T, ...)(ﬁ—i’)"x Yint

ij

<(3—:> =G<a)a’Ea’ne= Te’ )X ‘/TII

<—:>,-, =min {(g—';')c.amp’ <g—z>ii}

* The value of the clamping parameter (0n/ng)cjamp is determined by
fitting the simulation results with the scattered-light measurements

— for CH ablators: (0n/ng)clamp = 0-1%

TC9763 *P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009).
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Simulations including CBET agree well with

scattered-light spectral measurements
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Time-resolved scattered-light spectra from a spherical implosion

Center-beam rays
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CBET extracts the energy from the center-beam
incoming rays and transfers it to outgoing rays.
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CBET reduces the absorption by ~10%, but the

implosion hydrodynamic efficiency is reduced by ~20%
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Absorption and transferred
energy rates att = 0.5 ns
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Energy deposition area is shifted outward,
reducing hydrodynamic efficiency.




Laser coupling at intensities up to I ~ 6 x 1014 W/cm?
is accurately predicted by the CBET model
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Bang-time measurements
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Laser coupling at intensities up to I ~ 6 x 1014 W/cm?
is accurately predicted by the CBET model
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Ablation-front trajectory
inferred from x-ray images
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Laser coupling at intensities up to I ~ 6 x 1014 W/cm?
is accurately predicted by the CBET model
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Scattered-light measurements
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The accuracy of the CBET model was demonstrated using
OMEGA implosions with different pulse shapes and targets.
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High-intensity implosions (I ~ 1015 W/cm?2)
show disagreements with the CBET model
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Bang-time measurements

Relative powers
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Scattered-light measurements
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The missing scattered light may be caused by
— two-plasmon-decay instability*
— enhanced absorption in laser hot spots**

*W. Seka, U06.00005

**A. V. Maximov, U06.00007
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CBET can be mitigated in symmetric direct-drive

implosions by reducing the energy in beam edges
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Center-beam ray
Beam 2

CBET region

Edge-
beam ray
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CBET can be mitigated in symmetric direct-drive

implosions by reducing the energy in beam edges
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Center-beam ray
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CBET can be mitigated in symmetric direct-drive

implosions by reducing the energy in beam edges
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Center-beam ray

Scattered energy (%)
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TC9767b *Rpeam defined at 95% energy



CBET can be mitigated in symmetric direct-drive

implosions by reducing the energy in beam edges
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Center-beam ray

Scattered energy (%)
Nonuniformities (%)

ee%y

e"’ 7 Rpeam/ Rtarget

Simulations suggested an optimum neutron yield can be achieved
on OMEGA by reducing the laser beam to Rpeam/Rtarget ~ 0-8.

TCOT767¢ *Rpeam defined at 95% energy



Experiments* on OMEGA are investigating the
optimum laser-beam diameter by balancing CBET
with nonuniformities in low-adiabat implosions
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Teoree *D. Froula, U06.00009




Experiments with small beams recover
the red-shifted part of the spectrum
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The scattered light decreases rapidly

with reduced beam size
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The increased absorption

results in earlier bang time
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Bang times inferred from

Bang-time measurements 36 neutron timing data
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Bang time shifts ~20% earlier, indicating increasing hydro efficiency.
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Higher implosion velocities
are achieved with smaller beams
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Shell trajectories
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Implosion velocities
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Predicted effects of small beams are consistent with scattered-light,
bang-time, and shell trajectory measurements.
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Smaller beams introduce more nonuniformities

caused by the laser-beam geometry
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X-ray framing-camera images at the same target radius
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Experiments* on OMEGA are investigating the
optimum laser-beam diameter by balancing CBET
with nonuniformities in low-adiabat implosions
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Neutron yield sensitivity was addressed in experiments

with varying target size
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Measured yield normalized to
simulations without CBET

Measured yield normalized .

to simulations with CBET
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Experiments demonstrate beneficial effects of reducing beam sizes.
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CBET can be mitigated by using

multiple-color laser beams
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Two-color split

Same wavelength

beams are strongly 1/2 CBET
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Separation of the wavelengths by AA > A;(c,/c) ~ 5 A
(for a 351-nm laser) reduces the CBET by a factor of 2.

TC9774



Future work
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* Implementation of the CBET model in 2-D* to simulate polar-drive designs

e Using truncated phase plates to mitigate CBET

e Optimization of phase plates for polar drive when including CBET

*J. A. Marozas, PO8.00003
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Summary/Conclusions

Crossed-beam energy transfer (CBET) can reduce

the performance of direct-drive ICF implosions i

LLE

e CBET is observed in time-resolved reflected-light spectra as
a suppression of red-shifted light during the main laser drive

 CBET extracts energy from the center-beam incoming light
and transfers it to outgoing light, reducing the laser absorption
and hydrodynamic efficiency
e CBET can be reduced
— using beams smaller than the target diameter

— using laser beams with two or more colors

Mitigation strategies are being tested on OMEGA.
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