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Crossed-beam energy transfer (CBET) can reduce
the performance of direct-drive ICF implosions

TC9760

Summary

•	 CBET is observed in time-resolved reflected-light spectra as  
a suppression of red-shifted light during the main laser drive

•	 CBET extracts energy from the center-beam incoming light 
and transfers it to outgoing light, reducing the laser absorption 
and hydrodynamic efficiency

•	 CBET can be reduced 

–  using beams smaller than the target diameter

–  using laser beams with two or more colors

Mitigation strategies are being tested on OMEGA.
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Scaled-down implosion experiments on OMEGA are 
used to validate direct-drive NIF implosion designs

TC9858 *V. N. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010).



Experiments on OMEGA have been modeled using 
hydrodynamic codes LILAC* and DRACO**

TC9881

	 *	J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
	**	B. Radha et al., Phys. Plasmas 12, 032702 (2005).
	***	V.N. Goncharov et al., Phys. Plasmas 15, 056310 (2008).

•	 Radiation transport package

–	 multi-group diffusion

•	 Equation-of-state package

–	 SESAME

–	 QEOS

•	 Laser absorption package

–	 inverse bremsstrahlung

•	 Thermal transport package

–	 flux-limited transport

–	 nonlocal transport*** 

Hydrodynamic 
efficiency



Measured bang time is late by ~200 ps,  
indicating reduced laser coupling
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Simulations overpredict the  
red-shifted scattered light

E19908b
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Simulations overpredict the  
red-shifted scattered light
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•	 Blocking the central 
portion of the beam in the 
simulations reproduces 
the observed spectrum



CBET can be responsible for the discrepancy  
between experiments and simulations

E19905e

•	 CBET involves electromagnetic 
(EM)-seeded, low-gain 
stimulated Brillouin scattering

•	 EM seed is provided by edge-
beam light

•	 Center-beam light transfers 
some of its energy  
to outgoing light*

•	 The transferred light bypasses 
the highest absorption region 
near the critical surface*

Target
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Cross-beam
energy transfer
is spatially limited
near M ~ 1

CBET reduces laser absorption 
and hydrodynamic efficiency.**

	 *	D. H. Edgell et al., Bull. Am. Phys. Soc. 52, 195 (2007);
		 53, 168 (2008); 54, 145 (2009).
	**	I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
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The CBET numerical algorithm considers pairwise 
interactions of light rays

TC9762

	*	C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
	†	E. A. Williams et al., Phys. Plasmas 11, 231 (2004).
	**	I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
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An ion-acoustic wave saturation model is required to match 
the scattered-light power for intensities I L 4 × 1014 W/cm2

TC9763

•	 The amplitude of ion-acoustic waves is limited  
by clamping electron- density fluctuations*

•	 The value of the clamping parameter (dn/ne)clamp is determined by 
fitting the simulation results with the scattered-light measurements

–	 for CH ablators:  (dn/ne)clamp ≈ 0.1%
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Time-resolved scattered-light spectra from a spherical implosion
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scattered-light spectral measurements

E19972c

CBET extracts the energy from the center-beam 
incoming rays and transfers it to outgoing rays.



CBET reduces the absorption by ~10%, but the 
implosion hydrodynamic efficiency is reduced by ~20%

TC8628a

Energy deposition area is shifted outward, 
reducing hydrodynamic efficiency.
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Laser coupling at intensities up to I ~ 6 × 1014 W/cm2 
is accurately predicted by the CBET model

TC9764
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The accuracy of the CBET model was demonstrated using 
OMEGA implosions with different pulse shapes and targets.



Bang-time measurements Scattered-light measurements 
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High-intensity implosions (I ~ 1015 W/cm2) 
show disagreements with the CBET model

TC9864

The missing scattered light may be caused by
–	 two-plasmon-decay instability*
–	 enhanced absorption in laser hot spots**

	*	W. Seka, U06.00005
	**	A. V. Maximov, UO6.00007
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TC9767b *Rbeam defined at 95% energy
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CBET can be mitigated in symmetric direct-drive 
implosions by reducing the energy in beam edges
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Simulations suggested an optimum neutron yield can be achieved 
on OMEGA by reducing the laser beam to Rbeam/Rtarget ~ 0.8.

*Rbeam defined at 95% energy



Experiments* on OMEGA are investigating the  
optimum laser-beam diameter by balancing CBET  
with nonuniformities in low-adiabat implosions

TC9768
*D. Froula, UO6.00009
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Experiments with small beams recover  
the red-shifted part of the spectrum
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The scattered light decreases rapidly  
with reduced beam size
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The increased absorption  
results in earlier bang time

TC9860
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Bang time shifts ~20% earlier, indicating increasing hydro efficiency.



Higher implosion velocities  
are achieved with smaller beams
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bang-time, and shell trajectory measurements.
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Smaller beams introduce more nonuniformities  
caused by the laser-beam geometry

TC9772

•	 For beam radii < 70% to ~80% 
of the target radius, significant 
nonuniformities develop

•	 Neutron yields in these 
experiments are affected by 
single-beam nonuniformities



Experiments* on OMEGA are investigating the  
optimum laser-beam diameter by balancing CBET  
with nonuniformities in low-adiabat implosions

TC9884
*D. Froula, UO6.00009
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Neutron yield sensitivity was addressed in experiments  
with varying target size

TC9861

Experiments demonstrate beneficial effects of reducing beam sizes.
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CBET can be mitigated by using  
multiple-color laser beams

TC9774

Separation of the wavelengths by Dm > mL(ca/c) ~ 5 Å
(for a 351-nm laser) reduces the CBET by a factor of 2.
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Future work

TC9856

•	 Implementation of the CBET model in 2-D* to simulate polar-drive designs

•	 Using truncated phase plates to mitigate CBET

•	 Optimization of phase plates for polar drive when including CBET

*J. A. Marozas, PO8.00003 
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Mitigation strategies are being tested on OMEGA.

Summary/Conclusions

Crossed-beam energy transfer (CBET) can reduce
the performance of direct-drive ICF implosions

•	 CBET is observed in time-resolved reflected-light spectra as  
a suppression of red-shifted light during the main laser drive

•	 CBET extracts energy from the center-beam incoming light 
and transfers it to outgoing light, reducing the laser absorption 
and hydrodynamic efficiency

•	 CBET can be reduced 

–  using beams smaller than the target diameter

–  using laser beams with two or more colors


