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Analysis of Laser-Imprinting Reduction in Spherical-RT 
Experiments with Si-/Ge-Doped Plastic Targets
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A few percent of Si-/Ge-doping into plastic ablators 
can reduce the vrms of shell-tR perturbations 
by a factor of 3 to 5

TC9748

Summary

•	 Mitigating laser imprint with high-Z doping has 
been explored in both spherical Rayleigh–Taylor 
(RT) experiments and 2-D DRACO simulations

•	 Experimental results show

–	 a factor of 2 to 3 reduction in the laser  
imprinting efficiency 

–	 reduced RT growth rate by ~50% when 
high-Z-doped targets are used

•	 The experimental observations are reproduced  
by radiation–hydrodynamics simulations using 
2-D DRACO
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Hydro-simulations predicted that high-Z doping can 
mitigate laser-imprinting effects* on target implosions

TC9750

•	 High-Z doping can increase the standoff distance between the 
ablation surface and the laser-deposition regions, thereby reducing 
the imprint

•	 Radiation preheat from high-Z doping increase the ablation velocity, 
leading to enhanced ablative stabilization of the RT growth

•	 Implosions with Si-/Ge-doped plastic targets** have shown a yield 
increase by a factor of >2, which have been attributed to improved 
target stability

•	 Thin-layer (<1000 Å) high-Z coatings*** have also shown yield 
improvements in target implosions

	 *	S. X. Hu et al., “Mitigating Laser Imprints in Direct-Drive ICF Implosions 		
		 with High-Z Dopants,”submitted to Physical Review Letters.

	 **	V. N. Goncharov et al., Phys. Plasmas, 15, 056310 (2008);
		 J. P. Knauer et al., Bull. Am. Phys. Soc. 52, 233 (2007);
		 P. B. Radha et al., Bull. Am. Phys. Soc. 52, 143 (2007).

	***	S. P. Obenschain et al., Phys. Plasmas 9, 2234 (2002);
		 A. N. Mostovych et al., Phys. Rev. Lett. 100, 075002 (2008).



LILAC simulations for pure-CH targets and 
7.4% Si-doped CH targets indicate the  
expected laser-imprinting reduction effects

TC9751  *R. Betti et al., Phys. Plasmas 5, 1446 (1998).
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Spherical-RT experiments with high-Z-doped targets 
(entire shell doping) were performed on OMEGA 
using the cone-in-shell configuration*

TC9752  *V. A. Smalyuk et al., Phys. Rev. Lett. 103, 105001 (2009).
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48 OMEGA beams were used to drive 
target implosions, with laser imprints 
of broadband DPP modes (SSD off).

Targets:
•	 Pure CH
•	 CHSi [4.3%]
•	 CHSi [7.4%]
•	 CHGe [3.9%]



2-D DRACO simulations predict ~3× lower laser 
imprinting amplitude for the CHSi [7.4%] target
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The shell tR-modulation comparison at the 
beginning of acceleration (t = 1.5 ns)
vrms(tR) = 0.080 mg/cm2 (CH)
vrms(tR) = 0.026 mg/cm2 (CHSi [7.4%])
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Both simulations and experiments show significant 
improvements of shell integrity with high-Z doping
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Significant imprinting reduction in tR modulation by 
3 to 5 times has been observed for high-Z-doped targets

TC9755

Using the directly measured mass-absorption coefficients 
(n) of undriven targets, we can infer the evolution of tR 
modulations because of DOD = nDtR.
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Summary/Conclusions

A few percent of Si-/Ge-doping into plastic ablators 
can reduce the vrms of shell-tR perturbations 
by a factor of 3 to 5

NIF ignition designs using a CH ablator with halfway Si doping 
show no reduction in gain (radiation preheat effects minimized).

•	 Mitigating laser imprint with high-Z doping has 
been explored in both spherical Rayleigh–Taylor 
(RT) experiments and 2-D DRACO simulations

•	 Experimental results show

–	 a factor of 2 to 3 reduction in the laser  
imprinting efficiency 

–	 reduced RT growth rate by ~50% when 
high-Z-doped targets are used

•	 The experimental observations are reproduced  
by radiation–hydrodynamics simulations using 
2-D DRACO


