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Studying the interplay between different laser-absorption 
and laser-scattering mechanisms is an important goal  
of implosions on OMEGA

TC9777

•	 To resolve discrepancies between observation and the predictions for 
implosions driven at moderate intensities <5 × 1014 W/cm2, a cross-beam 
energy transfer mechanism must be included in the modeling

•	 At higher drive intensities, electron-plasma wave excitation caused 
by the two-plasmon-decay instability contributes to the laser-energy 
coupling and target drive

•	 Since laser–plasma interaction is sensitive to plasma scale length,  
it is crucial to validate laser-coupling models at NIF-relevant scales  
using experiments on OMEGA EP and the NIF

Summary
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Laser coupling determines hydrodynamic efficiency  
and the shell implosion velocity
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•	 Shell kinetic energy in an ignition design must exceed a threshold value1

•	 Emin has a strong dependence on the shell implosion velocity Vimp

•	 Shell implosion velocity is inferred by measuring 
    	 –	 shell trajectory (backlighting, self-emission)
		  –	 timing and history of neutron production (NTD)

kJE
V P

50
3 10 100

. imp Mbar
0.85.9- -

min
1 9

7#
a=^ e ch o m

1M. C. Hermann, M. Tabak, and J. D. Lindl. Phys. Plasmas 8, 2296 (2001).



Laser-coupling models are tuned using  
both cryogenic and warm implosions
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*	P. B. Radha et al., Phys. Plasmas 18, 012705 (2011).
	 C. Stoeckl, PO8.00004
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At moderate drive intensities <5 × 1014 W/cm2, cross-beam 
energy transfer (CBET) limits laser coupling

TC9778

I ~ 3.3 × 1014 W/cm2, warm implosion
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At moderate drive intensities <5 × 1014 W/cm2, cross-beam 
energy transfer1 (CBET) limits laser coupling
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I ~ 3.3 × 1014 W/cm2, warm implosion

1	I. V. Igumenshchev, YI3.00001 	
	 I. V. Igumenshchev, Phys. Plasmas 17, 122708 (2010).
	 D. H. Froula, UO6.00005
 	J. A. Marozas, PO8.00003



As drive intensity approaches 5 × 1014 W/cm2,
predictions using CBET start to deviate from the data
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•	 Clamping the ion wave amplitude in the CBET model1,2 to dn/n ~ 10–3

brings predictions in closer agreement with the data

•	 Adhoc clamp value indicates presence of an additional absorption 
mechanism

1	P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009).
2	I. V. Igumenshchev, YI3.00001

I ~ 4.5 × 1014 W/cm2, warm implosion



At higher drive intensities >5 × 1014 W/cm2, an additional 
absorption mechanism is required to match predictions 
with the data
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Results of cryogenic implosions also indicate presence of an 
additional absorption mechanism at higher drive intensities

TC9782

Time (ns)

Shot 62205

8

12

S
ca

tt
er

ed
 p

o
w

er
 (

T
W

)

4

0
0 1 2 43

1023

Time (ns)

N
eu

tr
o

n
 r

at
e 

(1
/s

)

1022

1021

1020
3.8 4.0 4.2 4.4

Measurement

Measurement

No clamp
Clamp, dn/n = 10–3

Clamp, dn/n = 3 × 10–4

I ~ 8 × 1014 W/cm2, cryogenic implosion

A single clamp model is not consistent with all observations.

Effect of laser hot spots on SBS reflectivity is discussed by A. V. Maximov, UO6.00007.
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Discrepancy between the CBET model predictions and 
the data is reduced by including energy deposition into 
electron-plasma waves* (EPW)
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	 *	W. Seka, UO6.00005
	**	TPD model including nonlinear effects is presented by J. Myatt, UO6.00008.

A laser deposition model caused by TPD instability  
is currently being implemented in hydrocodes. 

•	 Collisional damping of EPW is high enough to deposit the majority 
of wave energy into thermal electrons

I ~ 9 × 1014 W/cm2, warm implosion
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Summary/Conclusions

Studying the interplay between different laser-absorption 
and laser-scattering mechanisms is an important goal  
of implosions on OMEGA

•	 To resolve discrepancies between observation and the predictions for 
implosions driven at moderate intensities <5 × 1014 W/cm2, a cross-beam 
energy transfer mechanism must be included in the modeling

•	 At higher drive intensities, electron-plasma wave excitation caused 
by the two-plasmon-decay instability contributes to the laser-energy 
coupling and target drive

•	 Since laser–plasma interaction is sensitive to plasma scale length,  
it is crucial to validate laser-coupling models at NIF-relevant scales  
using experiments on OMEGA EP and the NIF


