Measurements of D₂ Neutron Yield and Ion Temperature in DT Implosions on OMEGA

University of Rochester Laboratory for Laser Energetics 53rd Annual Meeting of the American Physical Society Division of Plasma Physics Salt Lake City, UT 14–18 November 2011

Summary

The D₂ neutron yield and ion temperature in DT implosions have been measured on OMEGA

- A dedicated neutron time-of-flight (nTOF) detector and a collimated line of sight were developed on OMEGA to measure D₂ neutron yield and ion temperature in DT implosions
- The independently measured DT and D₂ ion temperatures are consistent with a single thermal source
- The experimentally measured ratio of DT to D₂ neutron yields is in good agreement with *LILAC* simulations of DT cryogenic implosions, and somewhat higher than the prediction of an ice-block model

UR 🔌

Collaborators

C. Stoeckl, T. C. Sangster, C. Forrest, J. P. Knauer, V. N. Goncharov, and P. B. Radha Laboratory for Laser Energetics

University of Rochester

D. T. Casey and M. Gatu Johnson

Plasma Science and Fusion Center Massachusetts Institute of Technology

The measurement of D_2 yield and T_i in DT implosions required a new detector and a collimated line of sight

- To record a small D_2 signal after a DT signal that is 350 to 1000× higher, the following requirements must be satisfied:
 - the nTOF detector has a gated PMT to eliminate the DT peak and avoid photomultiplier tube (PMT) saturation
 - the time separation between DT and D_2 peaks is larger than the PMT gate recovery time
 - low-afterglow scintillators like oxygenated xylene¹, EJ-399-17 ("Liquid A")², and bibenzyl crystal³ are used

¹C. Stoeckl et al., Rev. Sci. Instrum <u>81</u>, 10D302 (2010). ²www.eljentechnology.com

³N. Zaitseva et al., LLNL-JRNL-414904 (2009).

The nTOF20-Spec6 detector* filled with oxygenated xylene is being used for DT/D_2 ratio measurements

- Gated PMT 240 records the D₂ neutron signal
- Ungated PMT 140 records the DT neutron signal

The nTOF20-Spec6 detector was calibrated *in-situ* in D₂ shots on OMEGA with the same gate as in DT shots

A typical scope trace from the gated PMT-240 in a DT implosion clearly shows the D₂ neutron peak

The measured DT/D_2 yield ratios are somewhat higher than the prediction of an ice-block model

- 36% T is a recent measurement
- Value to be confirmed by LLNL experts

- Systematic error now being determined
- 10% systematic error in T fraction is possible

An ice-block model assumes constant n_d , n_t , T_i , and a fixed D to T ratio in the fuel.

There is good agreement between data and LILAC simulations of the DT/D₂ yield ratio in cryogenic shots

Only recent shots with 25- μ m target offsets are shown.

The independently measured DT and D₂ ion temperatures are consistent with a single thermal source

The D₂ neutron yield and ion temperature in DT implosions have been measured on OMEGA

- A dedicated neutron time-of-flight (nTOF) detector and a collimated line of sight were developed on OMEGA to measure D₂ neutron yield and ion temperature in DT implosions
- The independently measured DT and D₂ ion temperatures are consistent with a single thermal source
- The experimentally measured ratio of DT to D₂ neutron yields is in good agreement with *LILAC* simulations of DT cryogenic implosions, and somewhat higher than the prediction of an ice-block model

UR 🔌