Magnetic-Field Generation in Planar Plastic Targets on OMEGA EP

L. Gao University of Rochester Laboratory for Laser Energetics

t = *t*₀ + 2.5 ns

53rd Annual Meeting of the American Physical Society Division of Plasma Physics Salt Lake City, UT 14–18 November 2011

MG-level magnetic fields generated by Rayleigh–Taylor instability are observed in the laser-driven foils

UR 🔌

- Self-generated magnetic fields can affect electron transport
- Magnetic-field generation is diagnosed using laser-driven proton radiography of 15- μ m-thick planar CH targets irradiated at $I \sim 4 \times 10^{14}$ W/cm² on OMEGA EP
- The Rayleigh–Taylor instability is predicted to produce MG-scale magnetic fields in a broken foil during the acceleration phase
- A proton ray-tracing code will be used to reproduce characteristics of the radiography images

Collaborators

P. M. Nilson, I. V. Igumenshchev, S. X. Hu, C. Stoeckl, D. H. Froula, and D. D. Meyerhofer Laboratory for Laser Energetics

University of Rochester

The Rayleigh–Taylor instability in laser-driven targets generates large amounts of fluid vorticity*

Azimuthal magnetic fields are generated by $\nabla n_e \times \nabla T_e$.

^{*}K. Mima, T. Tajima, and J. N. Leboeuf Phys. Rev. Lett. <u>41</u>, 1715 (1978).

R. G. Evans Plasmas Phys. Control. Fusion. 28, 1021 (1986).

R. Betti and J. Sanz Phys. Rev. Lett. <u>97</u>, 205002 (2006).

Magnetic-field generation was studied using the acceleration of planar, 15- μ m-thick plastic targets on OMEGA EP

Proton radiography reveals magnetic-field generation and its evolution

Bubble size scale doubles in 500 ps.

A 2-D magnetohydrodynamic simulation with DRACO* predicts a broken foil caused by Rayleigh–Taylor instability during the acceleration phase

*D. Keller et al., Bull. Am. Phys. Soc. <u>44</u>, 37 (1999).

P. B. Radha et al., Phys. Plasmas <u>12</u>, 032702 (2005).

DRACO* reproduces the measured foil trajectory

*D. Keller et al., Bull. Am. Phys. Soc. <u>44</u>, 37 (1999).

P. B. Radha et al., Phys. Plasmas <u>12</u>, 032702 (2005).

MG-level magnetic fields are predicted in the broken foil

A proton ray-tracing code will be used to reproduce characteristics of the radiography images

MG-level magnetic fields generated by Rayleigh–Taylor instability are observed in the laser-driven foils

- Self-generated magnetic fields can affect electron transport
- Magnetic-field generation is diagnosed using laser-driven proton radiography of 15- μ m-thick planar CH targets irradiated at $I \sim 4 \times 10^{14}$ W/cm² on OMEGA EP
- The Rayleigh–Taylor instability is predicted to produce MG-scale magnetic fields in a broken foil during the acceleration phase
- A proton ray-tracing code will be used to reproduce characteristics of the radiography images

