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Summary

J. L. Wise and L. C. Chhabildas, Sandia National Laboratories, 
Report SAND-85-0310C, NTIS (1985).

The refractive index of ramp-compressed LiF depends  
linearly on density up to 800 GPa

•	 Knowledge of LiF’s compressed index of refraction is important 
for high-pressure equation-of-state (EOS) measurements 

•	 The refractive index of shock-compressed LiF has previously 
been measured to 115 GPa*

•	 Ramp-compressed LiF is measured up to 800 GPa

–	 LiF is observed to remain transparent over this range

•	 A single-oscillator model suggests that the band gap will close 
at pressures above 4200 GPa

–	 these are the highest ever refractive-index measurements 
of an insulator
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There is significant technical utility in ramp-compressed 
optical windows for material studies

E20388

•	 Optical velocimetry is a 
powerful tool that probes  
the response of materials 
under dynamic compression

•	 Transparent optical windows 
maintain compression 
within a sample enabling 
in-situ particle-velocity 
measurements for EOS 
studies

•	 Accurate optical velocimetry 
measurements require that  
the n(t) of the window 
is known

Drive

Sample Velocimetry

Drive

Sample Transparent
window

Velocimetry

Motivation



The refractive index of optical windows affects VISAR 
velocity measurements

E19483a

•	 VISAR detects Doppler shifts from 
moving surfaces

•	 Optical windows influence the 
Doppler shift

•	 Changes to the window alter the optical 
path length of the probe beam

•	 The refractive index is determined if 
the apparent velocity (Uapp) and the
true velocity (Utrue) are known

Uapp
VISAR

n ≠ 1

Uapp Ushock VISAR

n0nshock

Utrue
VISAR

n = 1

Theory



The transparency of shocks in LiF windows makes  
it possible for VISAR to probe the material interface

E18046d

•	 Single shocks up to 160 GPa are transparent in LiF*

–	 multishocks up to 500 GPa are transparent

•	 VISAR probes through the compressed material; this alters its sensitivity

•	 VISAR measures the rate of change of the optical path length

–	 corrections must be made for the compressed refractive index (nc)

LiF window

Reflecting surface

LiF

nc n0

VISAR
UcUp

*J. L. Wise and L. C. Chhabildas, Shock Waves in Condensed Matter 1985, DEAC04-DP00789



Shock experiments are limited by Hugoniot 
melt and shock entropy

E19149

•	 Transparent insulators 
transform into conducting 
fluids

–	 pressure-induced 
reduction of the band 
gap and thermal 
promotion of electrons 
across that gap

•	 Entropy produced by  
high-pressure shock  
waves transforms materials 
into conductive matter

–	 highly reflective  
at the shock front Pressure (GPa)

Te
m

p
er

at
u

re
 (

10
0

0 
K

)

6

7

8

250 300200150100500

4

5

3

2

1

0

Melt line

LiF*

Isentrope

Boehler melt (1997)
SESAME 7271
SESAME 7271
MD simulations

Hugoniot

*R. Boehler, M. Ross, and D. B Boercker, Phys. Rev. Lett. 78, 4589 (1997).



•	 Hayes* shows that for ramp compression

•	 Two measurable parameters are required to determine n(t)

•	 Utrue is determined using specially designed targets
and the method of characteristics

A two-section target enables simultaneous measurements 
of the apparent and true particle velocity to be made

E18912e *D. Hayes, J. Appl. Phys. 89, 6484 (2001).
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Method of characteristics and impedance matching 
determines the true particle velocity

Measure Ufs (t)

Backward characteristic
algorithm to drive surface

Calculate P(t)

Forward characteristic
algorithm to diamond/LiF
interface

Calculate Utrue (t)

Diamond ramp isentrope from 
D. K. Bradley et al., Phys. Rev. Lett. 102, 075503 (2009).
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LiF refractive-index experiments were performed 
using laser-drive ramp compression on OMEGA

E18346c

•	 Experiments used laser energies between 270 to 770 J 
delivered in 3.7- or 7.0-ns ramp profiles

•	 VISAR* has a time resolution of <30 ps

OMEGA Experiments
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The applied diamond-pressure scaling law is determined 
from VISAR and laser-power measurements*

E19616 *D. E. Fratanduono et al., J. Appl. Phys. 109, 123521 (2011).
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Diamond free-surface and apparent interface velocity 
are measured simultaneously with VISAR on OMEGA

E19056c
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Applied pressure is determined from diamond free- 
surface velocity using the backward characteristics
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The applied pressure is forward propagated through 
the LiF window to infer the true particle velocity 

E19169
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The Monte Carlo technique is used to estimate errors 
associated with the calculated true velocity

E19155

Monte Carlo errors

•	 Experimental diamond 
isentrope

–	 standard deviations 
provided*

•	 LiF EOS (SESAME 7271)
–	 assumed 10% error  

in pressure

•	 Gap thickness between 
diamond anvil and LiF window

Timing errors (of the order of the 
etalon delay) were incorporated 
following the Monte Carlo routine

*D. K. Bradley et al., Phys. Rev. Lett. 102, 075503 (2009).
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The apparent velocity depends linearly  
on the true particle velocitiy for 17 experiments

E19156d
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LASNEX simulations were performed to validate 
the method of characteristics and address concerns 
regarding shock formation in the LiF window
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•	 LASNEX simulations 
tested the effects of shock 
formation and gap thickness 
on the calculated interface 
velocity

•	 It was found that the gap 
thickness and shock 
formation do not significantly 
affect the interface velocity

•	 Excellent agreement was 
observed between LASNEX 
simulations and the method 
of characteristics



LASNEX simulations show that shock formation 
in the LiF window does not perturb interface measurements
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	 Agreement between LASNEX simulations and the method  
of characteristics validates this technique and uncertainties 
caused by the vacuum gap.



A second-order, orthogonal-polynominal regression 
determines the relation of the apparent and true particle 
velocities
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•	 Refractive index is determined 
from the Hayes formula*

•	 For linear Uapp (Utrue)**

A linear dependence on refractive index is observed

E19160c
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	 *	D. Hayes, J. Appl. Phys. 89, 6481 (2001).
	**	D. E. Fratanduono et al., J. Appl. Phys. 109, 123521 (2011).
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E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

The effective-oscillator model is used to interpret the 
linear dependence of the refractive index and density

E19270

•	 Only electronic excitations 
are considered

–	~ is assumed to lie above
the vibrational modes

•	 Changes in the refractive  
index caused by increases  
in density are due to a shift in  
the electronic resonance to 
lower frequency
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The single-oscillator model accurately describes
the dispersion of the refractive index

E19484

•	 Over 100 solid and liquid insulators 
obey this model

–
–

1n
E
E E0d2

0
2 2 2& ~

=

–	 Ed is the dispersion energy

–	 E0 is the single-oscillator energy

-	 for the alkali-halides, E0 
is related to the excitonic 
energy (ET) by E0 - 1.36 ET

•	 Previous studies on compressed H2
	 and H2O to 100’s of GPa have shown 	
	 that Ed is insensitive to changes
	 in density
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An effective-oscillator model suggests LiF will remain 
transparent to pressures above 4200 GPa

Extrapolation of these results suggests metallization 
will occur at ~4200 GPa.
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The effective-oscillator model suggests LiF  
will remain transparent to pressures above  
the Goldhammer–Herzfeld metallization

E19163a

PGH (GPa) POA (GPa) PBSC (GPa)

LiF 2800 – –

Rbl 127 85 122

Kl 125 115 155

Csl 105 111 100

Xe 150 – 132

He – – 11,200

Ne – – 158,000

High metallization pressure of LiF suggests that it will be a valuable 
window for high-pressure ramp-compression experiments.

GH:	   Goldhammer–Hertzfeld criterion
OA:	   Optical absorption
BSC:	  Band structure calculation
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Summary/Conclusions

J. L. Wise and L. C. Chhabildas, Sandia National Laboratories, 
Report SAND-85-0310C, NTIS (1985).

The refractive index of ramp-compressed LiF depends  
linearly on density up to 800 GPa

•	 Knowledge of LiF’s compressed index of refraction is important 
for high-pressure equation-of-state (EOS) measurements 

•	 The refractive index of shock-compressed LiF has previously 
been measured to 115 GPa*

•	 Ramp-compressed LiF is measured up to 800 GPa

–	 LiF is observed to remain transparent over this range

•	 A single-oscillator model suggests that the band gap will close 
at pressures above 4200 GPa

–	 these are the highest ever refractive-index measurements 
of an insulator


