Radiative Precursors and Temperature Measurements in Shocked Deuterium

T. R. Boehly **University of Rochester** Laboratory for Laser Energetics

53rd Annual Meeting of the **American Physical Society Division of Plasma Physics** Salt Lake City, UT 14-18 November 2011

E

Spherical shock-timing data were used to study deuterium at pressures of 0.5 to 25 Mb

- Simultaneous velocity and self-emission are used to infer temperature versus pressure up to ~5 Mb
- At ~6 Mbar (~10 eV), the dependence of self-emission on velocity changes; likely due to a radiative precursor

UR

- Above the insulator–conductor transition, shock reflectivity rises with increasing velocity, suggesting changes in carrier density or relaxation time
- For shocks ~>0.5 Mb, D₂ becomes strongly coupled, warm dense matter (Γ > 1, Θ ~ 1)

V. N. Goncharov, W. Seka, S. X. Hu, J. A. Marozas, and D. D. Meyerhofer Laboratory for Laser Energetics

P. M. Celliers, D. G. Hicks, M. A. Barrios, D. E. Fratanduono, and G. W. Collins Lawrence Livermore National Laboratory

The behavior of shocked D₂ was studied using multiple spherically converging shocks

Simultaneous VISAR and SOP data provide self-emission as a function of velocity

The self-emission detected from D₂ shocks depends linearly on shock velocity

For velocities \geq 70 km/s, SOP intensity stops rising, ultimately blanking at velocities >130 km/s

For velocities \geq 70 km/s, SOP intensity stops rising, ultimately blanking at velocities >130 km/s

precursor that reduces the detected SOP signal.

OMEGA VISAR data indicate that D_2 shock reflectivity rises linearly with velocity above ~30 km/s

^{*}P. M. Celliers et al., Phys. Rev. Lett. 84, 5564 (2000).

D₂ shock temperatures show quadratic dependence on velocity and agree with previous measurements

UR

OMEGA temperature data are closer to "stiffer" EOS; reflectivity is important

D₂ Shock Reflectivity

Above the insulator–conductor transition, deuterium continues to evolve

- Reflectivity depends on carrier density $(\omega_{\textit{p}})$ and relaxation time (τ_{ei})

$$\varepsilon_r(\omega) = 1 - \frac{\omega_p^2 \tau^2}{1 + \omega^2 \tau^2} + i \frac{\omega_p^2 \tau}{\omega(1 + \omega^2 \tau^2)}$$

- Insulator-conductor (IC) transition is assumed to involve delocalization of all electrons and relaxation time at the loffe-Regal limit, i.e., constant reflectivity
- Reflectivity that increases above the IC transition implies varying carrier density and electron relaxation times

The observed shock reflectance can be reproduced by varying carrier density or relaxation time

NIC

At these pressures, $\Gamma > 1$, $\Theta \sim 1$; shocked D₂ is strongly coupled.

Spherical shock-timing data were used to study deuterium at pressures of 0.5 to 25 Mb

- Simultaneous velocity and self-emission are used to infer temperature versus pressure up to ~5 Mb
- At ~6 Mbar (~10 eV), the dependence of self-emission on velocity changes; likely due to a radiative precursor

UR

- Above the insulator–conductor transition, shock reflectivity rises with increasing velocity, suggesting changes in carrier density or relaxation time
- For shocks ~>0.5 Mb, D₂ becomes strongly coupled, warm dense matter $(\Gamma$ > 1, Θ ~ 1)