Simulations of Shock-Ignition Targets for the NIF

K. S. Anderson, *et al.* University of Rochester Laboratory for Laser Energetics Fusion Science Center 53rd Annual Meeting of the American Physical Society Division of Plasma Physics Salt Lake City, UT 14–18 November 2011

Summary

Shock ignition at higher implosion velocities (~300 μ m/ns) is being explored as a method of increasing margin on the NIF

- A high-implosion-velocity target at 305 μ m/ns exhibits a higher ignition threshold factor (ITF) of 5.5, compared to a slow target (250 μ m/ns) with an ITF of 3.1
- Two-dimensional simulations of a high-velocity target indicate excellent robustness to ice roughness up to $4\times$ NIF specification
- NIF polar-drive simulations show gain of 50; initial imprint simulations are approaching marginal ignition

R. Betti[†], P. W. McKenty, T. J. B. Collins, R. S. Craxton, J. A. Marozas, R. Nora[†], and S. Skupsky

University of Rochester Laboratory for Laser Energetics [†]also Fusion Science Center

L. J. Perkins

Lawrence Livermore National Laboratory

Ideal shock-ignition designs at full NIF energy are not feasible because of maximum laser power constraints

Original, marginally igniting 290-kJ design*

Scaling from 290 kJ to 1 MJ requires a spike laser power of >1 PW!

*Betti, et al., Phys. Rev. Lett. <u>98</u>, 155001 (2007).

For shock ignition to be feasible on the NIF, more hotspot energy must come from the fuel-assembly pulse FSE

- Shock-ignition targets lose substantial margin at the reduced laser spike powers attainable on the NIF
- Targets gain additional margin by increasing the velocity of the fuel assembly
- The target design must carefully balance the contribution of the main pulse and spike pulse to the hot-spot energy

The NIF-scaled version of the original shock-ignition design requires unfeasible power requirements

At laser powers that are achievable on the NIF, the shock pressure is much lower, and margin is degraded

Sizeable margin is recovered by decreasing the target thickness, thereby increasing the velocity of the fuel assembly FSE

The effect of the spike shock is diminished, but ITF still increases.

The faster implosion at 620 kJ attains higher 1-D margin at the expense of a higher in-flight aspect ratio (IFAR) FSE

ITF_{1-D} = 5.5

High-implosion-velocity target performance in 2-D is insensitive to ice roughness up to $\sim 4 \times \text{NIF}$ specifications

Initial imprint simulations have achieved near-ignition; polar-drive achieves gain 50 within NIF specifications

*LLE Review Quarterly Report <u>114</u>, 73 (2008).

J. A. Marozas, J. D, Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. <u>55</u>, 294 (2010).

FSC

Summary/Conclusions

Shock ignition at higher implosion velocities (~300 μ m/ns) is being explored as a method of increasing margin on the NIF

- A high-implosion-velocity target at 305 μ m/ns exhibits a higher ignition threshold factor (ITF) of 5.5, compared to a slow target (250 μ m/ns) with an ITF of 3.1
- Two-dimensional simulations of a high-velocity target indicate excellent robustness to ice roughness up to $4\times$ NIF specification
- NIF polar-drive simulations show gain of 50; initial imprint simulations are approaching marginal ignition

A low-velocity an alternate design exhibits lower 1-D margin, but has a lower IFAR

