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Integrated fast-ignition experiments study the coupling  
of fast-electron energy into a compressed core

E19351a

Summary

• The short-pulse laser produced up to 1.4±0.5 × 107 additional neutrons 
with proper beam timing 

• Shock-breakout measurements confirm an intact cone tip at peak neutron 
production

• 20-MeV electrons are measured in the laser-forward direction, suggesting 
that the pre-plasma plays an important role in the interaction

• DRACO–LSP integrated simulations model target implosion and heating

• The inferred ~3.5% laser–to–target-heating coupling should increase with 
improved OMEGA EP performance
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Fast ignition relies on the localized energy deposition  
of fast electrons in the compressed core

E17851a

Core conditions for 
achieving ignition:

T ~ 10 keV, tR ~ 1 g/cm2, 
t ~ 500 g/cm3

Energy that needs to be 
delivered to fuel*:

Eign ~ 20 to 40 kJ in 
GEH ~ 1 to 2 MeV electrons

Power ~ several PW 
I ~ 1020 W/cm2

t ~ 20 ps, r ~ 20 nm
  z ~ 20 to 40 nm

* S. Atzeni et al., Phys. Plasmas 15, 056311 (2008);
  M. Tabak et al., Fusion Sci. Technol. 49, 254 (2006);
  A. A. Solodov et al., Phys. Plasmas 15, 112702 (2008).
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Maximizing the coupling efficiency is a challenge  
for full-scale fast ignition

E17851b
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Coupling efficiency depends on

  •  laser conversion to electrons

  •  energy spectrum of electrons

  •  collimation of electrons

  •  cone tip to dense plasma  
     separation

  •  transport efficiency through  
     the cone and plasma



Integrated re-entrant cone fast-ignition experiments 
allow for studying core heating and electron coupling  
in compressed shells

E17852b
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 OMEGA experiments allow for
  • ~20-kJ drive energy
  • L1-kJ short-pulse energy
  • low-adiabat implosion
  • ~17# higher target mass
  • cryogenic targets

• Initial experiments at the Gekko Laser Facility at ILE, Osaka,  
  with cone-in-shell targets were encouraging*

*R. Kodama et al., Nature 418, 933 (2002).
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Cryogenic cone-in-shell targets are being developed at LLE

E19508

X-ray phase contrast image shows  
the D2 ice in a cone-in-shell target
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The facility will be DT capable in less than a year,
reducing isotherm constraints on fuel layering.
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Integrated fast-ignition experiments with re-entrant  
cone targets were performed at the OMEGA/OMEGA EP 
Laser Facility

E17738e

Shell material CD
Shell diameter ~870 nm
Shell thickness ~40 nm

Energy ~20 kJ (54 beams)
Wavelength 351 nm
Pulse shape Low-adiabat, a ≈ 1.5
Pulse duration ~3 ns
Implosion velocity ~2 × 107 cm/s

Energy ~1.0 kJ
Wavelength 1053 nm
Pulse duration ~10 ps
Intensity ~1 × 1019 W/cm2

Heating beam (relative timing varied)
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Gold cone
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* J. Bromage et al., Opt. Express 21, 16,561 (2008).
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A new detector has been developed that reliably 
measures neutron yields in FI-cone experiments 

E19352

• A liquid scintillator neutron time-of-flight detector* was developed that efficiently 
suppresses the hard x-ray background

• The 2.45-MeV neutron peak is smeared out because of neutron scattering  
and a large detector volume (~3.5 liter)

• The total neutron yield was obtained by integration

*C. Stoeckl et al., “A Gated Liquid-Scintillator-Based Neutron Detector for Fast-Ignitor Experiments 
and Down-Scattered Neutron Measurements,” to be published in Rev. Sci. Instrum.
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The neutron yield increased by a factor of 4  
with an appropriately timed OMEGA EP beam

E19353
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1.4±0.5 × 107 additional neutrons were produced with the short-pulse laser.



A strong shock launched by the implosion  
travels rapidly through the cone tip

E19356
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2-D hydrodynamic
simulations with  
the code SAGE*
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*R. S. Craxton and R. L. McCrory, J. Appl. Phys. 56, 108 (1984).



The shock breakout into the cone was simultaneously 
measured with a streaked optical pyrometer  
and a velocity interferometer 

E19354
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Shock-breakout measurements confirm an intact  
cone tip at peak neutron production

E19355
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X-ray radiation from the coronal plasma  
can preheat the cone tip

E19357

• The inner surface of the thin tip reaches a temperature of 2 eV,  
enough to vaporize and ionize it

• LILAC modeled the radiation transport through 5- and 15-nm-thick 
gold walls
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X-ray radiation from the implosion corona  
affects the inner cone wall for a thin cone tip

E19358
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The measured hot-electron temperature is several 
MeV and is significantly higher than expected from 
ponderomotive scaling

E19359

• Ponderomotive scaling 
predicts ~0.3 MeV

• More electrons below 2 MeV 
were measured sideways
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Higher electron energies may be caused by cone filling  
by a pre-plasma

E19360

• The IR critical density contour moved ~100 nm away from the surface of 
the inner cone tip

• Self-focusing in pre-plasma and OMEGA EP beam nonuniformities might 
explain the observed hard-electron spectrum

2-D hydrodynamic simulations* predict plasma filling in the cone  
because of a laser pre-pulse

FSC

*HYDRA simulations: M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996).
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Hydrocode DRACO1 and hybrid-PIC code LSP2 were 
coupled to simulate integrated fast-ignition experiments3

E19361
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DRACO

  • Simulates the implosion in 2-D cylindrically     
    symmetric geometry

  • Calculates the neutron yield

LSP

  • 2-D/3-D implicit hybrid-PIC code that 
    calculates the target heating by fast electrons

  • Coupled to the hydrodynamic code
    DRACO during the short-pulse interaction

  • Ponderomotive scaling

Implosion

Coupling

Laser

Fast
electrons 1 P. B. Radha et al., Phys. Plasmas 12, 056307 (2005).

2 D. R. Welch et al., Phys. Plasmas 13, 063105 (2006).
3 A. A. Solodov et al., Phys. Plasmas 16, 056309 (2009).



Integrated DRACO–LSP simulations show that low-
energy electrons do not efficiently couple into the core

E19362

• Simulation for 10 ps, 1 kJ, R80 = 27nm, injection before peak tR

• Laser-target coupling efficiency (>10 g/cm3): 3.5% 

• Laser-target coupling efficiency (>100 g/cm3): 0.4% 
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With simple ponderomotive scaling, most neutron-yield 
increase comes from the shocked region directly behind 
the cone tip

E19363a
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• More heating in the core    
  is expected with a hotter   
  electron distribution
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The simulations predict an improved fast-electron 
coupling at higher laser intensity

E19364

• Coupling efficiency (>100 g/cm3) improves from 0.4% to 1.6%

• Coupling efficiency (>10 g/cm3) improves from 3.5% to 4.5%

• Predicted neutron yield is ~1.1 × 108

Simulation for improved OMEGA EP laser conditions: 10 ps, 2.6 kJ, R80 = 15 nm
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Integrated fast-ignition experiments study the coupling  
of fast-electron energy into a compressed core

E19351a

• The short-pulse laser produced up to 1.4±0.5 × 107 additional neutrons 
with proper beam timing 

• Shock-breakout measurements confirm an intact cone tip at peak neutron 
production

• 20-MeV electrons are measured in the laser forward direction, suggesting 
that the pre-plasma plays an important role in the interaction

• DRACO–LSP integrated simulations model target implosion and heating

• The inferred ~3.5% laser–to–target-heating coupling should increase with 
improved OMEGA EP performance
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Summary/Conclusions


