NIF Diagnostic Commissioning Platform Development on OMEGA

52nd Annual Meeting of the American Physical Society Division of Plasma Physics Chicago, IL 8–12 November 2010

A. Shvydky University of Rochester Laboratory for Laser Energetics

Summary

OMEGA experiments have demonstrated that polar-drive exploding-pusher implosions provide a reliable source of fusion products for the NIF

- Polar-drive (PD) implosions obtained 60% to 70% of 1-D yield
- Implosions were performed to study the effects of single-beam smoothing and target quality
- DRACO 2-D simulations correctly predict the onset and magnitude of neutron production
- There is qualitative agreement in the size and shape of x-ray images at later times when the incoming glass shell interacts with the outgoing shock wave

Six exploding-pusher targets have been shot on the NIF.

P. W. McKenty, F. J. Marshall, R. S. Craxton, J. A. Marozas, R. Epstein, S. Skupsky, and R. L. McCrory

University of Rochester Laboratory for Laser Energetics

Exploding pushers use polar drive to heat thin, glass-walled targets that drive strong shocks to produce MeV neutrons

Controllable Y_n : up to 1 × 10¹⁶, low ρr ~10's mg/cm², isotropic Y, easy fielding.

NIF's PD commissioning platform was validated on OMEGA using repointed and defocused laser beams

UR 🔌

OMEGA experiments used the same thin-wall glass targets as deployed on the NIF

UR

ullet

Initial D_2 PD experiments emulating NIF commissioning shots have demonstrated yields of 60% to 70% of 1-D predictions and good agreement with neutron production

DT implosions have determined that performance is insensitive to target quality and SSD

UR

Average symmetric experimental yield = 1.4×10^{12}

DRACO 2-D simulations reproduce the onset and magnitude of measured NTD neutron production of PD DT implosions

An x-ray framing camera (XRFC) was used to study the implosion symmetry

• The framing camera line of sight is 12° below the equator

Self-emission images of D₂ implosions obtained with XRFC agree with Spect3D/DRACO simulations

PD D₂ shot 54863, XRFC, TIM5 θ = 101°

600×600 - μ m regions Intensity of x-ray emission

Summary/Conclusions

OMEGA experiments have demonstrated that polar-drive exploding-pusher implosions provide a reliable source of fusion products for the NIF

- Polar-drive (PD) implosions obtained 60% to 70% of 1-D yield
- Implosions were performed to study the effects of single-beam smoothing and target quality
- DRACO 2-D simulations correctly predict the onset and magnitude of neutron production
- There is qualitative agreement in the size and shape of x-ray images at later times when the incoming glass shell interacts with the outgoing shock wave

Six exploding-pusher targets have been shot on the NIF.