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A One-Dimensional Planar Model
of Shock Ignition
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Summary

A planar hydrodynamic model is used to understand  
the basic physics behind shock ignition

•	 The peak hot-spot pressure is the optimization metric  
(model does not include any burn physics)

•	 An optimum shell thickness (Dcrt) exists that maximizes 
the conversion of shell kinetic energy into hot-spot internal  
energy (i.e., hot-spot pressure)

•	 Implosions augmented with their optimal ignitor shock are shown  
to have an increase in the Dcrt resulting in ~3× higher-peak 
hot-spot pressures over conventional hot-spot ignition
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With the same kinetic energy, SI increases the peak  
hot-spot pressures versus conventional hot-spot ignition
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R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).



A planar slab hydrodynamic model has been developed 
to understand the basic physics of the increase  
in shock-ignition pressure
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In conventional ICF, the hot-spot internal energy results 
from the conversion of shell kinetic energy
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KE may be increased by

	 •	 Raising the implosion velocity

			   –	 increases the hot-spot pressure

			   –	 drives higher levels of hydrodynamic instabilities

	 •	 Thickening the shell

			   –	 more fuel available to burn once ignition is reached

			   –	 thicker shell provides better hydrodynamic stability

			   –	 more often than not, this does not increase the peak 	
			   hot-spot pressure
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*	C. D. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007), and 
	M. C. Herrmann, M. Tabak, and J. D. Lindl, Nucl. Fusion 41, 99 (2001).
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Increasing the shell mass above a critical value  
in conventional hot-spot ignition does not increase  
the peak hot-spot pressure
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u = 3 × 107 cm/s
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For D > Dcrt, the shell kinetic energy poorly couples to the hot spot.
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Applying a late shock increases the shell velocity  
just before stagnation, enhancing the coupling of shell 
kinetic energy to hot-spot internal energy
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The ignitor shock increases Dcrt, utilizing “unused” 
kinetic energy to boost the maximum hot-spot pressure
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Summary/Conclusions

A planar hydrodynamic model is used to understand  
the basic physics behind shock ignition

•	 The peak hot-spot pressure is the optimization metric  
(model does not include any burn physics)

•	 An optimum shell thickness (Dcrt) exists that maximizes 
the conversion of shell kinetic energy into hot-spot internal  
energy (i.e., hot-spot pressure)

•	 Implosions augmented with their optimal ignitor shock are shown  
to have an increase in the Dcrt resulting in ~3× higher-peak 
hot-spot pressures over conventional hot-spot ignition
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A simple planar 1-D model is used to optimize  
the peak hot-spot pressure in ICF implosions
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