Evaluation of the First Polar-Drive, DT-Gas–Filled Target Implosions on the NIF

DT neutron yield: 1.3×10^{14}

DT neutron yield: 2.4×10^{14}

P. W. McKenty University of Rochester Laboratory for Laser Energetics 52nd Annual Meeting of the American Physical Society Division of Plasma Physics Chicago, IL 8–12 November 2010

Summary

NIF polar-drive DT-gas—filled target implosions have achieved all initial design milestones

• DT fueling of the Hoppe glass targets was conceived, engineered, tested, and implemented at LLE specifically for these NIF experiments

NIC

- NIF DT implosions were carefully planned using several OMEGA experimental series
- OMEGA experiments provided crucial input into the design of the NIF experiments
- NIF scattered light measurements are in excellent agreement with SAGE calculations
- GXD-2 images clearly indicate circular shell stagnation

Neutron record of 2.4×10^{14} was set on 10/30/2010.

R. S. Craxton, F. J. Marshall, A. Shvydky, R. Epstein, A. M. Cok, J. A. Marozas, T. J. B. Collins, S. Skupsky, C. Stoeckl, T. C. Sangster, M. J. Bonino, R. T. Janezic, D. R. Harding, W. T. Shmayda, S. F. B. Morse, D. D. Meyerhofer, and R. L. McCrory

> University of Rochester Laboratory for Laser Energetics

A. Nikroo, J. D. Kilkenny, M. L. Hoppe, and J. Fooks

General Atomics

A. J. MacKinnon, S. Le Pape, R. J. Wallace, and D. K. Bradley

Lawrence Livermore National Laboratory

G. A. Kyrala

Los Alamos National Laboratory

Simple PD designs employ existing NIF ID phase plates to access a wide range of diagnostic yield

LLE revitalized its DT-fueling capabilities and delivered DT glass targets for these experiments

TC9090

OMEGA DT series uncovered modeling issues in matching the experimental NTD burn histories

TC9091

With improved modeling, the OMEGA DT series showed excellent agreement with 1-D predictions

*See A. Shvydky (C05.00002).

The first NIF PD–DT shot was taken on 17 Sept 2010 and post-shot analysis focused on three diagnostics

- Backscatter plates (NBI)
 - SBS and SRS production during the implosion

NI

- quantify amount of laser blow-by
- Gated x-ray diagnostic (GXD)
 - evaluate PD hydrodynamic core formation
- Neutronics

The peak flux of all 3ω scattered light was measured to be 34 mJ/cm² at the chamber wall

LL

NIC

SAGE scattered light prediction was 31 mJ/cm². 100-kJ incident 9000 **31B NBI plate** 0.0005 Scattered light (J/sr) 0.0003 6000 0.0001 Equator 3000 36B NBI plate 0.0005 0.0003 0 0.0001 30 90 60 120 150 180 0 Polar angle θ (°)

The gated x-ray diagnostic (GXD-2) images of shot n0917 recorded a circular stagnating glass shell

LLE

NIC

Simulations of the stagnating glass shells show more-prolate images than those from the GXD-2

Shot N100917-006-999

Shot N100917-006-999

Shot N100917-006-999

The bulk of the DT neutron diagnostic commissioning experiments are now underway

Neutron yield results are excellent–consistently posting values to within 20% of pre-shot predictions

Summary/Conclusions

NIF polar-drive DT-gas-filled target implosions have achieved all initial design milestones

• DT-fueling of the Hoppe glass targets was conceived, engineered, tested, and implemented at LLE specifically for these NIF experiments

UR

NIC

- NIF DT implosions were carefully planned using several OMEGA experimental series
- OMEGA experiments provided crucial input into the design of the NIF experiments
- NIF scattered light measurements are in excellent agreement with SAGE calculations
- GXD-2 images clearly indicate circular shell stagnation

Neutron record of 2.4×10^{14} was set on 10/30/2010.