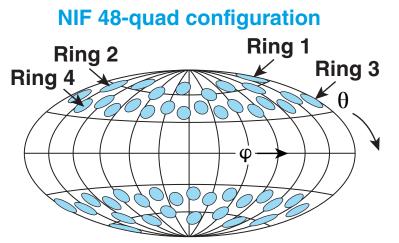


F. J. Marshall University of Rochester Laboratory for Laser Energetics 52nd Annual Meeting of the American Physical Society Division of Plasma Physics Chicago, IL 8–12 November 2010

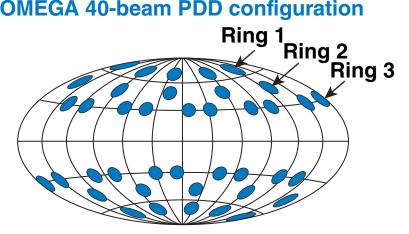
Summary

Irradiation experiments on OMEGA have verified our ability to predict polar-drive conditions on the NIF

- Six different beam-pointing configurations were used to explore the dependence of polar-drive implosion symmetry on beam pointing
- The implosions were diagnosed with framed x-ray backlighting and by the fusion-yield performance of the implosions
- The more-symmetric cases, as determined by the framed radiographs, had the highest fusion yields
- 2-D DRACO simulations match the shell size and shape, giving confidence in our ability to predict conditions on the NIF



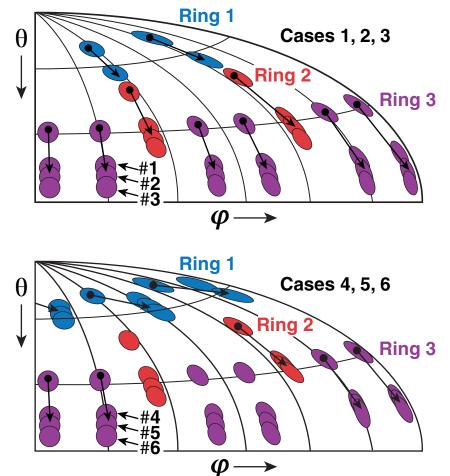
F. J. Marshall, R. S. Craxton, V. Yu. Glebov, P. W. McKenty, P. B. Radha, and A. Shvydky


University of Rochester Laboratory for Laser Energetics

> Related talks: W. McKenty (BO5.5). R. S. Craxton (BO5.8). A. Shyvdky (CO5.2).

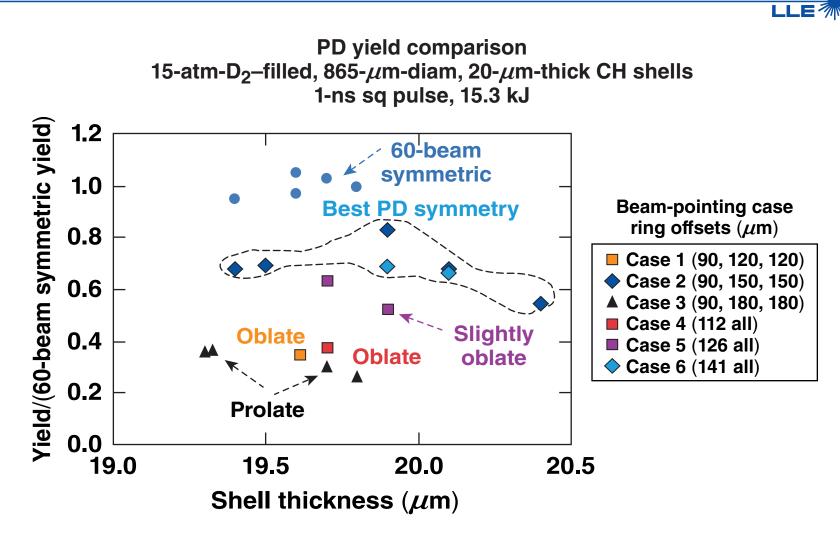
Six different NIF-relevant, beam-pointing cases were explored on OMEGA using polar-drive illumination

OMEGA 40-beam PDD configuration


- Laser conditions
 - 1-ns sq pulse, 15.3 kJ, 40 beams
 - 1 THz with polarization smoothing

- same energy for 60-beam shots
- Target type
 - 15-atm-D₂-filled, 865- μ m-diam, $20-\mu$ m-thick CH shells
 - θ = beam or quad colatitude φ = beam or quad azimuth

Six beam-pointing configurations were tested, including some with variations in azimuth


Cases 1, 2, 3 Changes in θ only Ring 1, 2, 3 #1 (90, 120, 120) μ m offsets #2 (90, 150, 150) #3 (90, 180, 180) Cases 4, 5, 6 Changes in θ for all beams Ring 1 beams have $\Delta \varphi = 36^{\circ}$ θ Rings 4, 5, 6

#4 (112, 112, 112) μm offsets #5 (126, 126, 126) #6 (141, 141, 141)

 ϕ variations were explored to minimize drive asymmetry.

The best polar-drive yield is obtained for the mostsymmetric implosions as determined from framed x-ray radiographs

UR

Irradiation experiments on OMEGA have verified our ability to predict polar-drive conditions on the NIF

- Six different beam-pointing configurations were used to explore the dependence of polar-drive implosion symmetry on beam pointing
- The implosions were diagnosed with framed x-ray backlighting and by the fusion-yield performance of the implosions
- The more-symmetric cases, as determined by the framed radiographs, had the highest fusion yields
- 2-D DRACO simulations match the shell size and shape, giving confidence in our ability to predict conditions on the NIF