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Planar Shock-Ignition Studies on OMEGA
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Planar-target, high-intensity laser–plasma interactions 
with relevance to shock ignition have been performed 
on OMEGA

TC9065

• Experimental data exhibit hot-electron generation at Te ~150 keV 
with conversion efficiencies of up to ~6%

• Scaled 1-D LILAC simulations suggest spike laser-generated
pressures of at least 100 Mbar

• 2-D DRACO simulations are currently in progress to fully evaluate 
the experimental conditions
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Shock ignition uses a non-isobaric fuel assembly 
to achieve a lowered ignition condition*

TC9066

Crucial issues for shock ignition: 

• Demonstrate hot-electron temperatures 
≤150 keV generated by spike**

• Demonstrate 400-Mbar spike-generated pressure
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*R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).
**See K. S. Anderson et al., BO5.00009
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A laser–plasma interaction experiment was performed 
in planar geometry with overlapping beams

TC9067

• Shock propagation in quartz 
is observed with SOP and 
VISAR

• Hot-electron component 
is inferred from Mo Ka
and x rays
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2-D DRACO simulations suggest a laser-generated
shock pressure in the plastic of up to 300 Mbar

TC9068

Simulations exhibit shock-ignition–relevant laser-generated pressures.
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Up to 6% of the high-intensity laser energy is converted 
into hot electrons

TC9069

• Measured hot-electron temperature is a factor ~ 3 higher than
in spherical geometry*

• This is probably due to significantly larger plasma scale 
length in planar experiments

• >150-keV electrons can be detrimental to target performance
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*See M. Lafon et al., XP9.00044
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The shock propagation in quartz was observed 
with streaked optical pyrometry and VISAR

TC9070
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• We have extracted temperature 
and velocity data from the 
shock propagation in quartz 
(Shot 57529)

Because of blanking, the decaying shock front 
in the SiO2 can be observed for only t > 4.2 ns

TC9071
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Straight early features suggest 1-D
treatment of hydrodynamics is sufficient
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1-D LILAC simulations are used to estimate a lower limit 
for the spike-generated shock pressure

TC9072

• The spike absorption is varied to match the shock-breakout time 
(~6.1 ns, Shot 57529)

• Simulations suggest that at 1 × 1015 W/cm2 laser-generated pressures 
of at least ~110 Mbar are achieved
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TC9065

Summary/Conclusions
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• Experimental data exhibit hot-electron generation at Te ~150 keV 
with conversion efficiencies of up to ~6%

• Scaled 1-D LILAC simulations suggest spike laser-generated
pressures of at least 100 Mbar

• 2-D DRACO simulations are currently in progress to fully evaluate 
the experimental conditions

Planar-target, high-intensity laser–plasma interactions 
with relevance to shock ignition have been performed 
on OMEGA


