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Low-Adiabat, High-Compression Cryogenic 
Deuterium–Tritium Implosions on OMEGA
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OMEGA experiments are used to validate theoretical 
hydrodynamic scaling for tR, <Ti>n, and yield used
in calculating ignition factor

TC9007

• The ignition factors (ITF, ITFX, |) define in-flight shell
(Vimp, a) and hot-spot conditions for achieving ignition

• Current simulations are in agreement with experimental 
measurements of <tR>n, <Ti>n, yield, and bang time

• Cross-beam transfer is important for understanding 
experimental results

• A model has been developed to relate the hot-spot 
distortion fraction with reduction in Ti and yield

Summary
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• Ignition design and ignition conditions

• Areal density

–  shock tuning

–  control of short-wavelength perturbation growth

• Hot-spot ion temperature and yield

–  validation of drive efficiency

–  effect of perturbation growth
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The symmetric direct-drive NIF ignition design 
has a 1-D gain of ~50
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The ignition factors depend on shell conditions and fuel mix

TC9011

• Ignition threshold factor for the indirect-drive NIF design1

 ITF = 1 has a 50% probability of achieving ignition

• Threshold factor2: measured conditions at neutron-production time

• ITFX ~       (defined in Ref. 3)

One of the main goals of the cryogenic campaign on OMEGA 
is to validate modeling of GtRH, GTiH, and yield.
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The shell areal density depends mainly on shell adiabat1

TC9013

• Shell adiabat is determined by

– shock heating—optimized 
in triple-picket design

– excessive short-scale perturbation 
growth—controlled by shell IFAR 
= radius/shell thickness
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Shock tuning is performed using VISAR measurements1

TC9014

5 to 10 nm CD + 0.1 nm Al

Velocity Interferometry System
for Any Reflector (VISAR)
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Simulations reproduce shock-velocity data very well 
for a variety of picket energies and picket timings
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Simulations reproduce shock-velocity data very well 
for a variety of picket energies and picket timings

TC9016

12
100

80

60

40

20

0

8

4

0
0 1 2 3 0 1 2 3 4 5

Time (ns) Time (ns)

P
o

w
er

 (
T

W
)

V
sh

o
ck

 (n
m

/n
s)

Measured
Predicted

Accuracy in shock-velocity prediction meets 
the ignition requirement.
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The areal density is degraded for shells with excessive 
short-scale perturbation growth

TC9017

• Warm CH implosions1

• In-flight aspect ratio (IFAR = radius/shell thickness) and adiabat 
are varied by changing picket energies

1P.B. Radha et al., “Triple-Picket Warm Plastic–Shell Implosions
  on OMEGA” submitted to Phys. Plasmas.
2P. B. Radha (To5.00003).
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The areal density is degraded for shells with excessive 
short-scale perturbation growth
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The measured areal density in triple-picket cryogenic 
implosions is larger than 88% of the 1-D predicted value1

TC8896c

The areal-density measurements confirm accuracy of shock
tuning and shell stability to short-wavelength perturbations.
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The measured ion temperature is ~25% lower
than the 1-D predicted value

TC9019

Neutron yield and temperature degradation are due to 3-D 
asymmetry effects or a reduction in hydrodynamic efficiency.
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Bang time is an accurate measurement of shell velocity

TC9020

Ion Temperature and Yield: Drive Efficiency

*C. D. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007).
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The scattered-light measurement indicates 
a loss in laser coupling 

TC9021
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Beam-to-beam energy transfer leads to a reduction 
in laser coupling1

TC8901a
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The transfer of energy from (1) to (2) is due to SBS before deposition2

1I. Igumenshchev et al., “Crossed-Beam Energy Transfer
  in ICF Implosions on OMEGA,” submitted to Phys. Plasmas 
2C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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When beam-to-beam energy transfer is included, 
both the bang time and laser absorption are in good 
agreement with simulations
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Beam-to-beam energy transfer leads to a reduction 
in the Ti and yield predictions

TC9023

An additional reduction in Ti and yield is caused
by 3-D asymmetry effects.
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Perturbation growth leads to a reduction in “clean” 
hot-spot volume and ion temperature
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Ion-temperature reduction can be related  
to the hot-spot distortion fraction
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Model prediction for yield and Ti is consistent
with the data

TC9026

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20

Radius (nm)

N
o

rm
al

iz
ed

 T
 d

t(
n

r2
) 

100

50

20

10

5

2

1

1.6

2.0

2.4

2.8

0 20 40 60 80 100

Exp.
SSD on

Exp.
SSD off

Y
O

C
 (

%
)

pstagnation (%)

GT
iH

n
 (

ke
V

) Clean volume
reduction only

Clean volume
and Ti reduction

T1-D/Tmax
T3-D/Tmax

max/
t
n r

t
n r

d
d

d
d2 2b l

Ion Temperature and Yield:  3-D



2-D simulations confirm temperature reduction 
predicted by the model
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Reducing target offset, ice roughness, and ablator finish 
is required to improve yield and Ti

TC9027 1S. X. Hu et al., Phys. Plasmas 17, 102706 (2010).
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With nonuniformity sources meeting the goal, 
a = 2 cryogenic implosions on OMEGA are predicted
to achieve YOC ~15% to 20% with GTiHn ~ 2.4 keV



With nonuniformity sources meeting the goal, 
a = 2 cryogenic implosions on OMEGA are predicted
to achieve YOC ~15% to 20% with GTiHn ~ 2.4 keV
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Summary/Conclusions

OMEGA experiments are used to validate theoretical 
hydrodynamic scaling for tR, <Ti>n, and yield used
in calculating ignition factor

• The ignition factors (ITF, ITFX, |) define in-flight shell
(Vimp, a) and hot-spot conditions for achieving ignition

• Current simulations are in agreement with experimental 
measurements of <tR>n, <Ti>n, yield, and bang time

• Cross-beam transfer is important for understanding 
experimental results

• A model has been developed to relate the hot-spot 
distortion fraction with reduction in Ti and yield


