Ion-Acoustic-Wave Instability from Laser-Driven Return Currents

D. H. Froula University of Rochester Laboratory for Laser Energetics 52nd Annual Meeting of the American Physical Society Division of Plasma Physics Chicago, IL 8–12 November 2010

Summary

An ion-acoustic-wave instability is observed for large ZT_e/T_i (i.e., weak ion Landau damping)

- The instability is enhanced when the target is cooling
- The instability saturates with signatures of trapping
- Weakly ion damped systems $(ZT_e/T_i > 30)$ are susceptible to enhanced ion fluctuations
- This instability has implications for laser–plasma instabilities (enhanced *T*_i) and laser-beam absorption (turbulence)

The return current instability produces lower LPI thresholds and higher laser-beam absorption.

Collaborators

V. N. Goncharov, S. X. Hu, and J. F. Myatt

University of Rochester Laboratory for Laser Energetics

J. S. Ross, L. Divol, and S. H. Glenzer

Lawrence Livermore National Laboratory Livermore, California

Ion-acoustic waves become unstable when the drift velocity exceeds the sound speed

- Heat is carried by "fast" electrons
- The relative drift between the electrons and ions maintains a quasi-neutral plasma
- When the drift exceeds the ion-acoustic phase velocity, electrons enhance the wave (electron Landau growth)

UR 🔌

• If the Landau growth rate is larger than the ion Landau damping, the waves are unstable

Ion-Acoustic-Wave Amplitude

The amplitude of the scattered light is a function of the electron and ion Landau damping

The ion Landau damping is negligible for $ZT_e/T_i > 30$, and the ion-wave amplitude is governed primarily by the electron-distribution function.

Experimental Setup

The ion-wave damping was varied by changing the target material (CH, V, Ag, Au)

UR

400 μ m from the target surface

that are propagating radially

Plasma Characterization

Thomson-scattering measurements provide a direct measure of ZT_e/T_i and the amplitude of the ion-acoutic waves

The ion-acoustic waves propagating to the center of the plasma are measured to be unstable in high-Z (Au) plasmas

For $ZT_e/T_i < 40$, the ion-acoustic waves are damped sufficiently by the ions to remain stable

This instability is likely driven by the return current (return-current instability)

function beyond the sound speed, the electrons "drive" the wave.

An ion-acoustic-wave instability is observed for large ZT_e/T_i (i.e., weak ion Landau damping)

- The instability is enhanced when the target is cooling
- The instability saturates with signatures of trapping
- Weakly ion damped systems $(ZT_e/T_i > 30)$ are susceptible to enhanced ion fluctuations
- This instability has implications for laser–plasma instabilities (enhanced *T*_i) and laser-beam absorption (turbulence)

UR 🔌

The return current instability produces lower LPI thresholds and higher laser-beam absorption.

The frequency shift in the driven ion-acoustic wave is consistent with trapping

The ion temperature and laser-beam coupling are enhanced by the unstable ion-acoustic waves.

At stable conditions, the drift velocity can be measured and compared with fluid simulations

 $\boldsymbol{q} = -\boldsymbol{\beta} \, \boldsymbol{T}_{\mathbf{e}} \boldsymbol{n}_{\mathbf{e}} \left[\boldsymbol{v}_{\mathbf{d}} + \boldsymbol{v}_{\mathbf{T}} \boldsymbol{\lambda}_{\mathbf{e}} \boldsymbol{\alpha} \, \nabla \, \ln(\boldsymbol{n}_{\mathbf{e}}) \right]$

2.5 Electron temperature (keV) 0.6 2.0 0.4 **Plasma flow** 0.2 1.5 v/c_s fl = 0.06 1.0 0.0 **Drift velocity** 0.5 -0.2 0.0 -0.4 1.5 2.0 2.5 1.5 2.0 2.5 Time (ns) Time (ns)