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Summary

The return current instability produces lower LPI thresholds 
and higher laser-beam absorption.

An ion-acoustic-wave instability is observed  
for large ZTe/Ti (i.e., weak ion Landau damping)

•	 The	instability	is	enhanced	when	the	target	is	cooling

•	 The	instability	saturates	with	signatures	of	trapping

•	 Weakly	ion	damped	systems	(ZTe/Ti > 30) are susceptible 
to enhanced ion fluctuations

•	 This	instability	has	implications	for	laser–plasma	instabilities	 
(enhanced Ti) and laser-beam absorption (turbulence)
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Ion-acoustic waves become unstable when  
the drift velocity exceeds the sound speed
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•	 Heat	is	carried	by	“fast”	electrons

•	 The	relative	drift	between	the	electrons	and	ions	maintains	 
a quasi-neutral plasma

•	 When	the	drift	exceeds	the	ion-acoustic	phase	velocity,	electrons	
enhance the wave (electron Landau growth)

•	 If	the	Landau	growth	rate	is	larger	than	the	ion	Landau	damping,	 
the waves are unstable
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The amplitude of the scattered light is a function  
of the electron and ion Landau damping
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Ion-Acoustic-Wave Amplitude

The ion Landau damping is negligible for ZTe/Ti > 30, and the ion-wave 
amplitude is governed primarily by the electron-distribution function. 
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The ion-wave damping was varied by changing  
the target material (CH, V, Ag, Au)
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The targets are heated by  
1-, 2-, or 3-ns-long laser pulses

Thomson-scattering is measured 
400 nm from the target surface

The 4~ beam and the collection 
direction are in the plane of the foil

The system probes waves  
that are propagating radially

Experimental Setup
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Thomson-scattering measurements provide a direct measure 
of ZTe/Ti and the amplitude of the ion-acoutic waves
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Scattering from the ion-acoustic waves 
provides a measure of ZTe, Ti

The amplitude of the scattered power 
is determined by Landau damping

Plasma Characterization
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The ion-acoustic waves propagating to the center of the 
plasma are measured to be unstable in high-Z (Au) plasmas
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Instability

The instability is enhanced when the plasma is cooling.
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For ZTe/Ti < 40, the ion-acoustic waves are damped 
sufficiently by the ions to remain stable
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Instability
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This instability is likely driven by the return current 
(return-current instability)
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Instability

When the return current shifts the peak of the electron-distribution 
function	beyond	the	sound	speed,	the	electrons	“drive”	the	wave.
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An ion-acoustic-wave instability is observed  
for large ZTe/Ti (i.e., weak ion Landau damping)
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Summary/Conclusions

The return current instability produces lower LPI thresholds 
and higher laser-beam absorption.

•	 The	instability	is	enhanced	when	the	target	is	cooling

•	 The	instability	saturates	with	signatures	of	trapping

•	 Weakly	ion	damped	systems	(ZTe/Ti > 30) are susceptible 
to enhanced ion fluctuations

•	 This	instability	has	implications	for	laser–plasma	instabilities	 
(enhanced Ti) and laser-beam absorption (turbulence)



The frequency shift in the driven ion-acoustic wave  
is consistent with trapping
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The ion temperature and laser-beam coupling  
are enhanced by the unstable ion-acoustic waves.
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At stable conditions, the drift velocity can be measured 
and compared with fluid simulations
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q = –b Tene [vd + oTmeadln(ne)]
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