Precision Equation-of-State (EOS) Measurements on NIF Ablator Materials Using Laser-Driven Shock Waves

M. A. Barrios University of Rochester Laboratory for Laser Energetics 52nd Annual Meeting of the American Physical Society Division of Plasma Physics Chicago, IL 8–12 November 2010

Summary

Precision equation-of-state (EOS) measurements are obtained on GDP and Ge-GDP from ~1 to 10 Mbar

- Design of NIF ignition targets requires precise knowledge of the ablator EOS
 - initial NIF target designs use Ge-doped GDP ablators
- Precision EOS measurements are obtained using the impedancematching (IM) technique with quartz standard
- GDP results are in agreement with available LEOS 5310 model
- Ge-GDP data are consistent with LEOS models with 0.5% and 0.2% Ge doping
- Results show that shocked GDP and Ge-GDP reach similar compressibilities

^{*}M. A. Barrios et al., Phys. Plasmas <u>17</u>, 056037 (2010).

D. E. Fratanduono, T. R. Boehly, and D. D. Meyerhofer

University of Rochester Laboratory for Laser Energetics

D. G. Hicks, P. M. Celliers, and J. H. Eggert

Lawrence Livermore National Laboratory

To support NIF experiments, the effect of ablator stoichiometry on equation of state was investigated

- Recent studies identified the effect of H:C ratio using CH and CH_2^*
- GDP has a H:C ratio of 1.4 and added 0 atoms; Ge-doping adds considerable complexity
- Knowing the EOS of CH is not sufficient due to differences in material properties (initial density, index of refraction, compositional stoichiometry)
- These can be characterized separately with experiments on GDP and Ge-doped GDP

Material	Formula
Polypropylene	СН
Polypropylene	CH ₂
GDP	CH _{1.4} O _{0.01}
Ge-GDP	CH _{1.4} O _{0.05} + Ge _{at 0.6%}

EOS measurements are obtained from the impedance-matching technique

Higher precision is obtained with a transparent standard compared to an opaque standard

Systematic Errors

Systematic errors are assessed by using α -quartz's experimental Hugoniot and approximating release isentropes via the Mie-Grüneisen EOS

• Γ is assumed to be constant in the highpressure fluid regime, with value $\Gamma = 0.64 \pm 0.11^2$

¹D. G. Hicks et al., Phys. Plasmas <u>12</u>, 082702 (2005).

²D. G. Hicks et al., Phys. Review B <u>78</u>, 174102 (2008).

The measured GDP EOS is in agreement with available models over the ~1- to 10-Mbar pressure range

The Ge-GDP data are consistent with available *LEOS* models in the $P-\rho$ plane

Structure in Ge-GDP $P-\rho$ EOS data is due to initial density variations

Precision equation-of-state (EOS) measurements are obtained on GDP and Ge-GDP from ~1 to 10 Mbar

- Design of NIF ignition targets requires precise knowledge of the ablator EOS
 - initial NIF target designs use Ge-doped GDP ablators
- Precision EOS measurements are obtained using the impedancematching (IM) technique with quartz standard
- GDP results are in agreement with available *LEOS* 5310 model
- Ge-GDP data are consistent with LEOS models with 0.5% and 0.2% Ge doping
- Results show that shocked GDP and Ge-GDP reach similar compressibilities

^{*}M. A. Barrios et al., Phys. Plasmas <u>17</u>, 056037 (2010).

Comparison of GDP and Ge-GDP results indicates that both materials reach similar compression states

EOS differences between laser and Z-machine results peak at ~6% in density and ~4% in pressure

Percent differences in resulting CHx pressure and density using laser and Z-machine quartz fit

UR 火

Percent differences in resulting CHx pressure and density using laser and Z-machine quartz fit

UR

E19488