A Plastic-Ablator Cryogenic Shock-Ignition Design for the NIF

K. S. Anderson, *et al*. University of Rochester Laboratory for Laser Energetics 52nd Annual Meeting of the American Physical Society Division of Plasma Physics Chicago, IL 8–12 November 2010

Summary

Plastic-ablator cryogenic shock-ignition designs for the NIF are predicted to be robust at sub-MJ energies

- Cryogenic targets with thick plastic ablators have higher two-plasmondecay (TPD) thresholds than DT ablators and, therefore, may avoid preheat from TPD hot electrons
- Targets are tested for robustness using a 1-D, clean-volume model to determine the minimum yield-over-clean (MYOC) required for ignition
- Implosions at 600 to 700 kJ are predicted to be robust to
 - spike pulse mistiming of 700 ps
 - hot-electron energy deposition in the shell
 - an ignition-threshold factor (ITF) of 3.0 for this target
- 2-D DRACO simulations indicate robustness to rms ice roughness up to 3.5 $\mu \rm m$

R. Betti,[†] R. S. Craxton, R. Nora^{†,} and A. A. Solodov

University of Rochester Laboratory for Laser Energetics †also Fusion Science Center for Extreme States of Matter and Fast Ignition

L. J. Perkins

Lawrence Livermore National Laboratory

Large hard x-ray signals in OMEGA experiments may indicate preheat from LPI-generated hot electrons

produce fewer hard x rays from hot electrons.

A thick plastic-ablator shock-ignition target for the NIF has been designed using existing NIF phase plates

$$\mathsf{IFAR}_{2/3} = \frac{R}{\Delta R} \text{ at } R = \frac{2}{3}R_0$$

cf. R. S. Craxton (BO5.0008).

A 1-D clean-volume model* is used to evaluate target robustness for design purposes

 The fusion rate is modified at sub-ignition temperatures by the ratio of clean volume to the 1-D hot-spot volume; this ratio is approximately the yield-over-clean (YOC)

$$(-, mod - (-, i = 0) (-, i = 0)$$

 $\langle \sigma \nu \rangle$ = $F(T_{i,r-0}) \langle \sigma \nu \rangle$

*K. S. Anderson *et al.*, Bull. Am. Phys. Soc. <u>54</u>, 306 (2009). P. Chang, K. Anderson, and R. Betti, Bull. Am. Phys. Soc. <u>54</u>, 260 (2009).

The 1-D ignition-threshold factor (ITF) can be calculated from the minimum yield-over-clean (MYOC) required for ignition

FSC
Varying the YOC as an input parameter, one finds the minimum YOC required for ignition

2-D DRACO simulations have validated this model for other designs*

^{*}K. S. Anderson *et al.*, Bull. Am. Phys. Soc. <u>54</u>, 306 (2009). P. Chang, K. Anderson, and R. Betti, Bull. Am. Phys. Soc. 54, 260 (2009).

Plastic-ablator shock-ignition targets are robust to shock timing and reduced clean volumes

The plastic-ablator SI design is robust to hot electrons up to 100 keV at 60% of laser energy during the spike pulse

- Straight-line hot-electron-transport model by A. A. Solodov
- Future work will investigate hotelectron transport during the main pulse

M. Hohenberger, BO5.00011 (2010); M. Lafon, XP9.00044 (2010).

Symmetric 2-D DRACO simulations performed with similar targets indicate robustness to ice roughness $>3.5-\mu$ m rms

FSC

- Symmetric laser irradiation
- DRACO simulations with 3.5- μ m-rms roughness in modes $\ell = 2$ to 50
- Target ignites with full gain
- Upper limit on robustness to ice modes not yet explored
- Other nonuniformity studies to follow (imprint, target offset, polar drive, etc.)

Summary/Conclusions

Plastic-ablator cryogenic shock-ignition designs for the NIF are predicted to be robust at sub-MJ energies

- Cryogenic targets with thick plastic ablators have higher two-plasmondecay (TPD) thresholds than DT ablators and, therefore, may avoid preheat from TPD hot electrons
- Targets are tested for robustness using a 1-D, clean-volume model to determine the minimum yield-over-clean (MYOC) required for ignition
- Implosions at 600 to 700 kJ are predicted to be robust to
 - spike pulse mistiming of 700 ps
 - hot-electron energy deposition in the shell
 - an ignition-threshold factor (ITF) of 3.0 for this target
- 2-D DRACO simulations indicate robustness to rms ice roughness up to 3.5 $\mu \rm m$