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Plastic-ablator cryogenic shock-ignition designs  
for the NIF are predicted to be robust at sub-MJ energies

TC9108

• Cryogenic targets with thick plastic ablators have higher two-plasmon-
decay (TPD) thresholds than DT ablators and, therefore, may avoid 
preheat from TPD hot electrons

• Targets are tested for robustness using a 1-D, clean-volume model to 
determine the minimum yield-over-clean (MYOC) required for ignition

• Implosions at 600 to 700 kJ are predicted to be robust to

  – spike pulse mistiming of 700 ps

  – hot-electron energy deposition in the shell

  – an ignition-threshold factor (ITF) of 3.0 for this target

• 2-D DRACO simulations indicate robustness to rms ice roughness 
up to 3.5 nm

Summary
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Large hard x-ray signals in OMEGA experiments may 
indicate preheat from LPI-generated hot electrons

TC8036f A. V. Maximov et al., Bull. Am. Phys. Soc. 52, 195 (2007).

FSC

OMEGA implosions with thick plastic ablators 
produce fewer hard x rays from hot electrons.

Experimental HXR
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A thick plastic-ablator shock-ignition target for the NIF 
has been designed using existing NIF phase plates

TC9109

Gain (1-D) 70

tR (g/cm2) 2.6

Vimp (nm/ns) 300

IFAR2/3 30
1-D beam profiles approximate polar drive.*

cf. R. S. Craxton (BO5.00008).
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TC8571a

• The fusion rate is modified at sub-ignition temperatures by the ratio of 
clean volume to the 1-D hot-spot volume; this ratio is approximately the 
yield-over-clean (YOC)

A 1-D clean-volume model* is used to evaluate target 
robustness for design purposes
FSC
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*K. S. Anderson et al., Bull. Am. Phys. Soc. 54, 306 (2009).
 P. Chang, K. Anderson, and R. Betti, Bull. Am. Phys. Soc. 54, 260 (2009).



The 1-D ignition-threshold factor (ITF) can be calculated 
from the minimum yield-over-clean (MYOC) required 
for ignition

TC8570a

• Varying the YOC as an input parameter, one finds the minimum  
YOC required for ignition

• 2-D DRACO simulations have validated this model for other designs*
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*K. S. Anderson et al., Bull. Am. Phys. Soc. 54, 306 (2009).
 P. Chang, K. Anderson, and R. Betti, Bull. Am. Phys. Soc. 54, 260 (2009).



Plastic-ablator shock-ignition targets are robust to shock 
timing and reduced clean volumes

TC9110

ITF for indirect-drive point design* 
is ~5.3 (MYOC = 33%) at 1 MJ.
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*J. Lindl, presented to the JASON Review Committee Study 
#JSR-09-330, San Diego, CA, 14–16 January 2009.



The plastic-ablator SI design is robust to hot electrons  
up to 100 keV at 60% of laser energy during  
the spike pulse

TC9111

• Straight-line hot-electron-transport 
model by A. A. Solodov

• Future work will investigate hot-
electron transport during the main 
pulse 

M. Hohenberger, BO5.00011 (2010); 
M. Lafon, XP9.00044 (2010).
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Symmetric 2-D DRACO simulations performed with 
similar targets indicate robustness to ice roughness 
>3.5-nm rms

TC9112

• Symmetric laser irradiation

• DRACO simulations with 
3.5-nm-rms roughness in 
modes , = 2 to 50

• Target ignites with full gain

• Upper limit on robustness to 
ice modes not yet explored

• Other nonuniformity studies 
to follow (imprint, target offset, 
polar drive, etc.)
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TC9108

Summary/Conclusions

Plastic-ablator cryogenic shock-ignition designs  
for the NIF are predicted to be robust at sub-MJ energies
FSC

• Cryogenic targets with thick plastic ablators have higher two-plasmon-
decay (TPD) thresholds than DT ablators and, therefore, may avoid 
preheat from TPD hot electrons

• Targets are tested for robustness using a 1-D, clean-volume model to 
determine the minimum yield-over-clean (MYOC) required for ignition

• Implosions at 600 to 700 kJ are predicted to be robust to

  – spike pulse mistiming of 700 ps

  – hot-electron energy deposition in the shell

  – an ignition-threshold factor (ITF) of 3.0 for this target

• 2-D DRACO simulations indicate robustness to rms ice roughness 
up to 3.5 nm


