

OMEGA EP arrival time (ns)

W. Theobald University of Rochester Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics and Laboratory for Laser Energetics 51st Annual Meeting of the American Physical Society Division of Plasma Physics Atlanta, GA 2–6 November 2009

Summary

Cone-in-shell fast-ignition experiments on OMEGA/ OMEGA EP have doubled the neutron yield with a 1-kJ, 10-ps laser pulse FSE

- A new neutron time-of-flight detector with a gated PMT and O₂-enriched liquid scintillator reliably measures neutron yields in fast-ignition experiments
- The short-pulse laser produced up to $1.7\pm0.5\times10^7$ additional neutrons with proper beam timing
- Initial DRACO/LSP simulations calculate $\sim 2 \times 10^7$ neutrons produced by short-pulse heating for 10% conversion efficiency

Collaborators

C. Stoeckl, V. Yu. Glebov, F. J. Marshall, K. L. Marshall, K. S. Anderson, R. Betti, R. S. Craxton, D. D. Meyerhofer, P. M. Nilson, T. C. Sangster, and A. A. Solodov Fusion Science Center and Laboratory for Laser Energetics University of Rochester

> J. A. Frenje, N. Sinenian, and R. D. Petrasso Plasma Science and Fusion Center—MIT

> > P. A. Norreys Rutherford Appleton Laboratory

D. Hey, M. H. Key, and P. K. Patel

Lawrence Livermore National Laboratory

R. Lauck Physikalisch-Technische Bundesanstalt

> R. B. Stephens General Atomics

Integrated re-entrant cone fast-ignition experiments allow core heating and electron coupling to be studied in compressed shells FSE

- Coupling efficiency depends on
 - laser conversion to electrons
 - energy spectrum of electrons
 - collimation of electron transport
 - cone tip to dense plasma separation
 - cone shape
 - transport efficiency through cone tip and plasma

Integrated fast-ignition experiments with re-entrant cone targets have begun at the Omega/Omega EP Laser Facility FSE

Shell material	CD
Shell diameter	~870 <i>µ</i> m
Shell thickness	~40 <i>µ</i> m

Implosion		
Energy	~18 kJ (54 beams)	
Wavelength	351 nm	
Pulse shape	Low-adiabat, $\alpha \approx$ 1.5	
Pulse duration	~3 ns	
Implosion velocity	\sim 2 × 10 ⁷ cm/s	

Target focal spot, log scale*

Heating beam

Energy	~1.0 kJ
Wavelength	1053 nm
Pulse duration	~10 ps
Intensity	\sim 1 \times 10 ¹⁹ W/cm ²

Relative timing varied

Pointing and timing of the short-pulse beam was achieved with ~20- μm and ~50-ps accuracy

provides temporal information

Two orthogonal x-ray pinhole camera views provide the spatial information

A new detector was developed that measures reliably neutron yields in FI-cone experiments UR 🔌 FSC

Liquid scintillators enriched with an O₂ quenching agent have a fast decay time—the γ -ray-induced fluorescence is efficiently suppressed.

R. Lauck et al., IEEE Transactions on Nuclear Science 56, 989 (2009).

LLE²

The neutron time-of-flight detector with a liquid scintillator showed no long decay tail from an intense hard x-ray pulse

The neutron yield increased more than a factor of two with an appropriately timed OMEGA EP beam

 $1.7\pm0.5 \times 10^7$ additional neutrons were produced with the short-pulse laser.

Initial DRACO/LSP simulations¹ were performed to study core heating

 The 2-D hydrodynamic code DRACO² was coupled to the hybrid PIC code LSP³

Simulations for 1-kJ, 10-ps, 40- μ m focus

Fast-electron conversion efficiency	Increase in neutron yield
10%	2.3 × 10 ⁷
20%	8.4 × 10 ⁷

The simulated implosion neutron yield is ~100× higher than in the experiment

FSC

¹A. A. Solodov et al., Phys. Plasmas <u>15</u>, 112702 (2008); ibid. <u>16</u>, 056309 (2009).

²P. B. Radha et al., Phys. Plasmas <u>12</u>, 056307 (2005).

³D. R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).

Future experiments will exploit heating with higher short-pulse energies and advanced targets $FS \in I$

- Quench implosion yield through thin inner CH layer
- Lower-Z cone materials may improve the coupling efficiency
- Explore fast-electron collimation with materials having different electrical resistivity

Cone-in-shell fast-ignition experiments on OMEGA/ OMEGA EP have doubled the neutron yield with a 1-kJ, 10-ps laser pulse

- A new neutron time-of-flight detector with a gated PMT and O₂-enriched liquid scintillator reliably measures neutron yields in fast-ignition experiments
- The short-pulse laser produced up to $1.7\pm0.5\times10^7$ additional neutrons with proper beam timing
- Initial DRACO/LSP simulations calculate $\sim 2 \times 10^7$ neutrons produced by short-pulse heating for 10% conversion efficiency

FSC

Neutron time-of-flight detectors were strongly shielded against hard x-ray radiation

LLE

FSC