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A new setup enables studies of shock-ignition at 
intensities of up to 1 × 1016 W/cm2 on OMEGA

E18417

• Shock ignition uses a highly shaped laser pulse with a trailing high 
intensity (~5 × 1015 W/cm2) spike

• Good coupling of the shock-beam energy was observed, leading  
to an ~20× increase in neutron yield.

• A significant Raman backscattering signal was observed with  
no indication of the two-plasmon-decay instability

• Up to 16% of the energy of the high intensity beams was converted 
into hot electrons of ~45 keV temperature

Summary
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Shock ignition requires ~3.5× less energy to achieve marginal 
ignition than a conventional hot-spot isobaric target
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*R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).



Laser–plasma interaction during the spike pulse and hot- 
electron generation are important issues for shock ignition

TC7870d

Hot e– with Maxwellian Thot = 150 keV, Ehot = 17% of spike 
energy, treated using a multigroup diffusion model*

*LILAC simulations by C. D. Zhou and R. Betti
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60 OMEGA beams are split into 40 low-intensity drive 
beams and 20 tightly focused, delayed beams

E17863d

Hydrodynamic performance, energy coupling, laser  
backscattering, and hot-electron generation are studied.
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• The delay and intensity of the tightly focused beams are varied



40 + 20 beam, 
13.6 + 4.8 kJ = 18.4 kJ
nonuniform illum.
N yield: 3.7 × 109

60 beam, 20.8 kJ
uniform illum.
N yield: 1.3 × 1010

A significant amount of energy is coupled into the 
capsule by the high-intensity beams
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X-ray pinhole images

View 1 View 2

40 beam, 13.7 kJ
nonuniform illum.
N yield: ~2 × 108

FSC

• ~11% power imbalance
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Variable delay
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Up to 16% of the shock-beam energy is converted  
into hot electrons of 45-keV temperature

E17864a

• The neutron yield enhancement 
is most sensitive to shock-
beam timing.



Up to 35% of the shock-beam laser energy  
is lost due to backscatter
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• No measurable signal of  
the 3/2 harmonic 

•  SRS dominates back reflection 
at highest intensity 

•  SBS reflection is relatively 
stable at ~10%



Experiments with repointed beams show reduced 
illumination nonuniformities and improved performance
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X-ray pinhole images

View 1 View 2

40 beam, 13.5 kJ
improved illum.
N yield: 1.6 × 109

40 + 20 beam, 
13.9 + 5.6 kJ = 19.5 kJ
improved illum.
N yield: 3.3 × 109
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• ~2.6% power imbalance 
with repointed beams
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Summary/Conclusions

A new setup enables studies of shock-ignition at 
intensities of up to 1 × 1016 W/cm2 on OMEGA

• Shock ignition uses a highly shaped laser pulse with a trailing high 
intensity (~5 × 1015 W/cm2) spike

• Good coupling of the shock-beam energy was observed, leading  
to an ~20× increase in neutron yield.

• A significant Raman backscattering signal was observed with  
no indication of the two-plasmon-decay instability

• Up to 16% of the energy of the high intensity beams was converted 
into hot electrons of ~45 keV temperature


