Inferring the Electron Temperature of Shocked Liquid Deuterium Using Inelastic X-ray Scattering

S. P. Regan University of Rochester Laboratory for Laser Energetics 51st Annual Meeting of the American Physical Society Division of Plasma Physics Atlanta, GA 2–6 November 2009 Summary

Inelastic x-ray scattering is a powerful diagnostic for equation-of-state measurements

- The electron temperature (T_e) of the shocked deuterium is inferred from the spectral line shapes of the noncollective x-ray scattering.
- Initial results from the new cryogenic experimental platform are consistent with *DRACO* 2-D simulations.
 - $T_e \sim 10 \text{ eV}$ at $P \sim 10 \text{ Mbar}$

Future experiments will combine inelastic x-ray-scattering observations with shock-velocity measurements to infer $n_{\rm e}$, $T_{\rm e}$, Z, ρ , and P of the shocked deuterium.

P. B. Radha, S. X. Hu, T. R. Boehly, V. N. Goncharov, R. L. McCrory,* D. D. Meyerhofer,* T. C. Sangster, and V. A. Smalyuk

> Laboratory for Laser Energetics University of Rochester

*also Departments of Mechanical Engineering and Physics University of Rochester

K. Falk and G. Gregori

Oxford University, Oxford, UK

T. Doeppner, S. H. Glenzer, and O. L. Landen

Lawrence Livermore National Laboratory

The shell adiabat is an important parameter for inertial confinement fusion (ICF)

• Shell adiabat
$$\rightarrow \alpha = \frac{P_{\text{fuel}}}{P_{\text{Fermi}}}$$

• The shell adiabat of the target is mainly controlled by the shock-wave strength.

Motivation for measuring low adiabat ($\alpha \sim 1$ to 3) plasma conditions in shocked deuterium: $E_{min} \sim \alpha^{1.8}$ (minimum laser energy for ignition)*,**

^{*}M. C. Hermann, M. Tabak, and J. D. Lindl, Nucl. Fusion <u>41</u>, 99 (2001). **R. Betti *et al.*, Phys. Plasmas <u>9</u>, 2277 (2002).

A laser-ablation-driven shock wave is launched in a planar liquid-deuterium target creating warm dense matter

An experimental platform to study inelastic x-ray scattering¹ from shocked deuterium has been demonstrated

The *T*_e of the shocked deuterium is inferred from the spectral line shapes of the noncollective x-ray scattering.

UR

G. Gregori et al., Phys. Rev. E <u>67</u>, 026412 (2003);

¹ S. H. Glenzer et al., Phys. Rev. Lett. <u>90</u>, 175002 (2003);

H. Sawada et al., Phys. Plasmas 14, 122703 (2007).

X rays scattered at 90° are recorded with a HOPG crystal spectrometer and an x-ray framing camera (XRFC)

Inelastic x-ray scattering is a powerful diagnostic for high-pressure (P > 10 Mbar) EOS research, which is inaccessible to optical shock-velocity measurements.

T_e is inferred from the Doppler-broadened Comptondownshifted peak of the noncollective x-ray scattering for $T_{\rm e} > T_{\rm F}^*$

Noncollective x-ray scattering from shocked deuterium has been observed

Initial results from the new cryogenic experimental platform are consistent with DRACO* 2-D simulations

*P. B. Radha et al., Phys Plasmas 12, 032702 (2005).

Inelastic x-ray scattering is a powerful diagnostic for equation-of-state measurements

- The electron temperature (T_e) of the shocked deuterium is inferred from the spectral line shapes of the noncollective x-ray scattering.
- Initial results from the new cryogenic experimental platform are consistent with *DRACO* 2-D simulations.
 - $T_e \sim 10 \text{ eV}$ at $P \sim 10 \text{ Mbar}$

Future experiments will combine inelastic x-ray-scattering observations with shock-velocity measurements to infer $n_{\rm e}$, $T_{\rm e}$, Z, ρ , and P of the shocked deuterium.