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Compression and self-generation of magnetic fields  
for laser-imploding targets are modeled with the  
DRACO/MHD code

TC8707

•	 An external magnetic field of <100 KG can be compressed to hundreds 
of mega-Gauss at the implosion stagnation with an ~15 kJ laser driver

•	 Noticeable effects of the compressed magnetic field on target 
hydrodynamics are demonstrated

•	 For nonuniformly irradiated implosions, simulations predict  
self-generation and amplification of the B-field by a number 
of MHD-related processes

•	 The magnetic field initially generated at the critical surface can reduce 
the laser imprinting on the ablation surface
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Magnetized laser implosions are simulated with the 
hydrocode DRACO modified to solve the MHD equations

TC8708

•	 The hydrodynamics are solved with the ALE (arbitrary Lagrangian/
Eulerian) hydrocode DRACO,1 that includes all relevant implosion physics

•	 The Lorentz force, anisotropic heat fluxes (B dependent2), and Joule 
heating are added to DRACO

•	 The magnetic field is obtained by numerically solving the MHD equations 
with anisotropic (B dependent2) coefficients

1P. B. Radha et al., Phys. Plasmas 12, 056307 (2005).
2S. I. Braginskii, in Reviews of Plasma Physics, edited by 
	 Acad. M. A. Leontovich (Consultants Bureau, New York, 1965).
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Az/Bz representation of the magnetic field in cylindrical 
geometry simplifies the simulations

•	 Az and Bz are evolved independently for isotropic MHD. 
The source term goes in only the equation for Bz

•	 For anisotropic MHD, B-field compression is  
described by the equation for Az
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	 and self-generation of the B-field by the equation for Bz
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•	 The heat flux includes magnetic inhibition and the diamagnetic component
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DRACO/MHD simulations of:
(a) B-field compression, and 
(b) B-field self-generation in spherical implosions

TC8709
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Imploding targets:  Rpellet = 410 nm, Rshell = 20 nm, PD2 = 3 atm

Laser:  Tpulse = 1 ns, Energy = 15 kJ
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Compression of a magnetic field for isotropic MHD 
shows that magnetic diffusion enhances the peak 
magnetic field
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Compression of B by advection, diffusion, and 
anisotropic thermal transport leads to the ultra-high  
B-field that influences the implosion hydrodynamics

TC8711

•	 Ions are heated 
~30% more due 
to thermal-heat-
flux inhibition by 
the compressed 
magnetic field

•	 Adv+Diff+ATT lead 
to enhancement 
~20% of the 
neutron yield

•	 TT redistributes B
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A self-generated B-field for nonuniformly irradiated laser 
implosions are produced by many different mechanisms

TC8712

1.	 Grad N × Grad T as a source

2.	 Tidman instability1 (linear) due to

		  q B Tb^T e#- dl= ^ h 8 B

3.	 Hot-spot amplification (nonlinear) due to

		  q B TT e- dl= =^ h

4.	 RT instability

5.	 Converging shock-front instability

6.	 Joule heating amplification

FSC

1D. A. Tidman and R. A. Shanny, Phys. Fluids 17, 1207 (1974).
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Self-generated B-fields at the corona edge and shock front in 
a gas are highly enhanced by field-inhibited thermal transport
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The self-generated magnetic field leads to a reduction 
of imprinting of laser irradiation nonuniformities on an 
ablation surface

TC8714

•	 The effect is due to an enhanced lateral heat transport induced  
by a self-generated magnetic fields at the initial stage of implosion.
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Compression and self-generation of magnetic fields  
for laser-imploding targets are modeled with the  
DRACO/MHD code

TC8707
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Summary/Conclusions

•	 An external magnetic field of <100 KG can be compressed to hundreds 
of mega-Gauss at the implosion stagnation with an ~15 kJ laser driver

•	 Noticeable effects of the compressed magnetic field on target 
hydrodynamics are demonstrated

•	 For nonuniformly irradiated implosions, simulations predict  
self-generation and amplification of the B-field by a number 
of MHD-related processes

•	 The magnetic field initially generated at the critical surface can reduce 
the laser imprinting on the ablation surface


