Effects of External and Self-Generated Magnetic Fields on Laser-Driven Implosions

O.V. Polomarov **University of Rochester Fusion Science Center for Extreme States** of Matter and Fast-Ignition Physics and Laboratory for Laser Energetics

51st Annual Meeting of the **American Physical Society Division of Plasma Physics** Atlanta, GA 2-6 November 2009

UR 🔌

Summary

FSC

Compression and self-generation of magnetic fields for laser-imploding targets are modeled with the DRACO/MHD code

- An external magnetic field of <100 KG can be compressed to hundreds of mega-Gauss at the implosion stagnation with an ~15 kJ laser driver
- Noticeable effects of the compressed magnetic field on target hydrodynamics are demonstrated
- For nonuniformly irradiated implosions, simulations predict self-generation and amplification of the *B*-field by a number of MHD-related processes
- The magnetic field initially generated at the critical surface can reduce the laser imprinting on the ablation surface

Collaborators

FSC

P. Chang, O. V. Gotchev, and R. Betti

University of Rochester Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics and Laboratory for Laser Energetics

Magnetized laser implosions are simulated with the hydrocode DRACO modified to solve the MHD equations

FSC	UR	
	LLE	

- The hydrodynamics are solved with the ALE (arbitrary Lagrangian/ Eulerian) hydrocode DRACO,¹ that includes all relevant implosion physics
- The Lorentz force, anisotropic heat fluxes (*B* dependent²), and Joule heating are added to *DRACO*
- The magnetic field is obtained by numerically solving the MHD equations with anisotropic (*B* dependent²) coefficients

¹P. B. Radha et al., Phys. Plasmas <u>12</u>, 056307 (2005).

²S. I. Braginskii, in Reviews of Plasma Physics, edited by Acad. M. A. Leontovich (Consultants Bureau, New York, 1965).

A_{ϕ}/B_{ϕ} representation of the magnetic field in cylindrical geometry simplifies the simulations

Assumptions:

• A_{ϕ} and B_{ϕ} are evolved independently for isotropic MHD. The source term goes in only the equation for B_{ϕ}

 $\vec{B} = B_{\phi} \vec{e}_{\phi} + \vec{\nabla} \times (A_{\phi} \vec{e}_{\phi}) \qquad \frac{\partial}{\partial \phi} = 0, \ v_{\phi} = 0$

• For anisotropic MHD, B-field compression is described by the equation for A_{ϕ}

 $\frac{\partial \mathbf{A}\boldsymbol{\phi}}{\partial t} = \left[(\vec{\boldsymbol{\nu}} \times \vec{\nabla} \times \vec{\mathbf{A}}) - \frac{\mathbf{c}}{\mathbf{e}} \left(\frac{\vec{\mathbf{R}} \mathbf{j} + \vec{\mathbf{R}} \mathbf{T}}{n_{\mathbf{e}}} \right) \right] \cdot \vec{\mathbf{e}} \boldsymbol{\phi}$

and self-generation of the *B*-field by the equation for B_{ϕ}

$$\frac{\partial \mathbf{B}\boldsymbol{\phi}}{\partial t} = \left[\vec{\nabla} \times (\vec{\nu} \times \vec{\mathbf{B}}) - \frac{\mathbf{c}}{\mathbf{e}} \vec{\nabla} \times \left(\frac{\vec{\mathbf{R}}\boldsymbol{\tau} + \vec{\mathbf{R}}\boldsymbol{j}}{n_{\mathbf{e}}} \right) + \frac{\mathbf{c}}{\mathbf{e}} \vec{\nabla} \times \left(\frac{\vec{\nabla}\boldsymbol{p}_{\mathbf{e}}}{n_{\mathbf{e}}} \right) \right] \cdot \vec{\mathbf{e}}\boldsymbol{\phi}$$

• The heat flux includes magnetic inhibition and the diamagnetic component

Inhibited h.f. h.f. along B Double perpendicular h.f. $\vec{q_T} = -\kappa_{\perp} (B) \vec{\nabla} T_{e} - [\kappa_{\parallel} - \kappa_{\perp} (B)] \vec{b} (\vec{\nabla} T_{e} \cdot \vec{b}) - \kappa_{\wedge} (B) [\vec{b} \times \vec{\nabla} T_{e}]$

Diffusion
$$\vec{R}_j = \alpha_{\perp}(B)\vec{j}/en_e$$

$$\overrightarrow{\mathsf{R}}_{T} = -\beta_{\wedge}^{uT}(B) \left[\overrightarrow{b} \times \overrightarrow{\nabla} T_{e}\right]$$

FSC

DRACO/MHD simulations of: (a) B-field compression, and (b) B-field self-generation in spherical implosions UR LLE

Imploding targets: $R_{\text{pellet}} = 410 \ \mu\text{m}$, $R_{\text{shell}} = 20 \ \mu\text{m}$, $P_{D_2} = 3 \ \text{atm}$ Laser: $T_{\text{pulse}} = 1 \ \text{ns}$, Energy = 15 kJ

(a) Field compression

Uniform irradiation $B_{z, ini} = 30,000$ Gauss

(b) Self-generation of B

Nonuniform irradiation Relative amplitude ~ 3%, Length_{ini} ~ 86 μ m

Compression of a magnetic field for isotropic MHD shows that magnetic diffusion enhances the peak magnetic field

Compression of *B* by advection, diffusion, and anisotropic thermal transport leads to the ultra-high *B*-field that influences the implosion hydrodynamics FSE

- lons are heated ~30% more due to thermal-heatflux inhibition by the compressed magnetic field
- Adv+Diff+ATT lead to enhancement ~20% of the neutron yield
- TT redistributes B

A self-generated *B*-field for nonuniformly irradiated laser implosions are produced by many different mechanisms FSE

- 1. Grad $N \times$ Grad T as a source
- 2. Tidman instability¹ (linear) due to

 $\vec{\boldsymbol{q}_{\mathsf{T}}} = -\kappa_{\wedge}(\boldsymbol{B}) \left[\vec{\boldsymbol{b}} \times \vec{\nabla} \boldsymbol{T}_{\mathsf{e}} \right]$

3. Hot-spot amplification (nonlinear) due to

 $\vec{q_T} = -\kappa_{\perp}(B) \vec{\nabla} T_e$

- 4. RT instability
- 5. Converging shock-front instability
- 6. Joule heating amplification

Vorticity in conducting fluid

Heat flows into the region of large T

Heat does not flow from the region of large B Field around conducting protrusions

Cold boundaries are heated by MHD current

¹D. A. Tidman and R. A. Shanny, Phys. Fluids <u>17</u>, 1207 (1974).

The self-generated magnetic field leads to a reduction of imprinting of laser irradiation nonuniformities on an ablation surface

• The effect is due to an enhanced lateral heat transport induced by a self-generated magnetic fields at the initial stage of implosion.

$$\vec{\boldsymbol{q}_{\mathsf{T}}} = -\boldsymbol{\kappa}_{\wedge}(\boldsymbol{B}) \left[\vec{\boldsymbol{b}} \times \vec{\nabla} \, \boldsymbol{T}_{\mathsf{e}} \right]$$

Compression and self-generation of magnetic fields for laser-imploding targets are modeled with the DRACO/MHD code

ovtornal magnetic field of 100 KC can be as

- An external magnetic field of <100 KG can be compressed to hundreds of mega-Gauss at the implosion stagnation with an ~15 kJ laser driver
- Noticeable effects of the compressed magnetic field on target hydrodynamics are demonstrated
- For nonuniformly irradiated implosions, simulations predict self-generation and amplification of the *B*-field by a number of MHD-related processes
- The magnetic field initially generated at the critical surface can reduce the laser imprinting on the ablation surface

FSC