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A 1-D Multi-FM SSD solution was found that minimizes 
the nonuniformity and achieves gain

TC8617

Summary

1-D Multi-FM will be tested on OMEGA EP in 2010.

•	 An	analytic	model	has	been	enhanced	to	handle	multiple	FM	modulators	
in each orthogonal direction

•	 The	analytic	SSD	model	reduces	the	variance	during	a	DRACO simulation

•	 The	1-D	Multi-FM	SSD	system	represents	a	significant	savings	for	the	NIF

–	 applied	in	the	fiber	front-end,	i.e.	no	bulk	optics

– low applied bandwidth means single frequency-conversion crystals 
(FCC) can be used

•	 Dynamic	bandwidth	reduction	will	be	employed	to	reduce	divergence 
and increase power during the drive pulse
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Multi-FM is produced by applying multiple 
FM modulators in a single dimension
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•	 Total	bandwidth	and	divergence	are	distributed	across	the	modulators 
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Multi-FM is produced by applying multiple 
FM modulators in a single dimension
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No pre-shear grating 
on NIF’s 1st SSD 

dimension

•	 Total	bandwidth	and	divergence	are	distributed	across	the	modulators

•	 Can be designed for bandwidth of DoUV = 0.5 THz (DmIR = 6 Å) single 
frequency-conversion crystals (FCC)

•	 Takes	advantage	of	multiple	color	cycles	without	detrimental	resonant	
features that are present in single modulator systems

 

Fiber optic front-end



1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_1

•	 Resonances	are	minimized	because	the	spatial	separation	
between the identical colors varies in time.

•	 Standard	1-D	SSD

  – 900-GHz 
  bandwidth

  – two color cycles

  – large resonances
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1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_2

•	 Resonances	are	minimized	because	the	spatial	separation	
between the identical colors varies in time.

•	 Standard	1-D	SSD

  – 900-GHz 
  bandwidth

  – two color cycles

  – large resonances

x near–field [cm]  

0.0

0.4

0.8

1.2

1.6

1/
tc

 (T
H

z)

171 1730173

,

x near field (cm) 

–20 –10 0 10 20

y 
n

ea
r 

fie
ld

 (
cm

)

–20

–10

0

10

20

Decoupled



1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_3

•	 Resonances	are	minimized	because	the	spatial	separation	
between the identical colors varies in time.

•	 1-D	SSD	Multi-FM

  – 500-GHz 
  bandwidth

  – many color cycles

  – resonances 
  minimized

•	 Standard	1-D	SSD

  – 900-GHz 
  bandwidth

  – two color cycles

  – large resonances
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1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_4

•	 Resonances	are	minimized	because	the	spatial	separation	
between the identical colors varies in time.

•	 1-D	SSD	Multi-FM

  – 500-GHz 
  bandwidth

  – many color cycles

  – resonances 
  minimized

•	 Standard	1-D	SSD

  – 900-GHz 
  bandwidth

  – two color cycles

  – large resonances

x near field (cm)  

–20 –10 0 10 20

y 
n

ea
r 

fie
ld

 (
cm

) 

–20

–10

0

10

200.0

0.4

0.8

1.2

1.6

1/
tc

 (T
H

z)

171 1730173

,

x near field (cm) 

–20 –10 0 10 20

y 
n

ea
r 

fie
ld

 (
cm

) 

–20

–10

0

10

20

Decoupled

Decoupled



The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_1

•	 Models	the	continuously 
	 changing	near-field	phase 
	 front	and	far-field	speckle 
 pattern

•	 Smoothing	results	from 
 temporal integration

Far-field	simulation	of	SSD
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The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_2

•	 Deterministic	model

Analytic Model

•	 Stochastic	model

Flipping Model
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•	 Models	the	continuously 
	 changing	near-field	phase 
	 front	and	far-field	speckle 
 pattern

•	 Smoothing	results	from 
 temporal integration

Far-field	simulation	of	SSD



The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_3

•	 Deterministic	model

•	 Analytic	temporal	integration

Analytic Model

•	 Stochastic	model

•	 Precalculation	of	tc and tasym

Flipping Model
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•	 Models	the	continuously 
	 changing	near-field	phase 
	 front	and	far-field	speckle 
 pattern

•	 Smoothing	results	from 
 temporal integration

Far-field	simulation	of	SSD



The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_4

•	 Deterministic	model

•	 Analytic	temporal	integration

•	 Pulse-shape	dependent

•	 Initial	random	state	of	phases

Analytic Model

•	 Stochastic	model

•	 Precalculation	of	tc and tasym

•	 Pulse-shape	dependent

•	 Initial	random	state	of	phases

Flipping Model
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•	 Models	the	continuously 
	 changing	near-field	phase 
	 front	and	far-field	speckle 
 pattern

•	 Smoothing	results	from 
 temporal integration

Far-field	simulation	of	SSD



The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_5

•	 Deterministic	model

•	 Analytic	temporal	integration

•	 Pulse-shape	dependent

•	 Initial	random	state	of	phases

•	 Phase	remains	constant

•	 Amplitude	varies

•	 Inherently	models	the	asymptotic	
behavior

Analytic Model

•	 Stochastic	model

•	 Precalculation	of	tc and tasym

•	 Pulse-shape	dependent

•	 Initial	random	state	of	phases

•	 Phase	can	randomly	flip	every	tc
•	 Amplitude	is	constant

•	 Random	phases	repeat	after 
tasym

Flipping Model
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•	 Models	the	continuously 
	 changing	near-field	phase 
	 front	and	far-field	speckle 
 pattern

•	 Smoothing	results	from 
 temporal integration

Far-field	simulation	of	SSD



The analytic SSD model calculates the modal 
amplitudes deterministically

TC8620

•	 The	far-field	simulation	
calculates the time-integrated 
fluence due to the continous 
SSD phase front
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TC8620a

•	 The	far-field	simulation	
calculates the time-integrated 
fluence due to the continous 
SSD phase front
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vasym Indicates the asymptotic level

The analytic SSD model calculates the modal 
amplitudes deterministically



TC8620b

•	 The	far-field	simulation	
calculates the time-integrated 
fluence due to the continous 
SSD phase front
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Indicates the time that the flipping model 
repeats random stream

•	 The	flipping	model	changes	
its phase state randomly every 
coherence time until tasym
(then repeats)

The analytic SSD model calculates the modal 
amplitudes deterministically



TC8620c

•	 The	far-field	simulation	
calculates the time-integrated 
fluence due to the continous 
SSD phase front

10–2

10–3

10–4
10–3 10–2 10–1 10–0 101

Nonuniformity for , mode = 50

Time (ns)

v
rm

s

Flipping
model - high

Far-field simulation

tasym

vasym

This realization of random phases 
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•	 The	flipping	model	changes	
its phase state randomly every 
coherence time until tasym
(then repeats)

The analytic SSD model calculates the modal 
amplitudes deterministically



TC8620d

•	 The	far-field	simulation	
calculates the time-integrated 
fluence due to the continous 
SSD phase front

•	 The	flipping	model	changes	
its phase state randomly every 
coherence time until tasym
(then repeats)
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The analytic SSD model calculates the modal 
amplitudes deterministically
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•	 The	far-field	simulation	
calculates the time-integrated 
fluence due to the continous 
SSD phase front

•	 The	flipping	model	changes	
its phase state randomly every 
coherence time until tasym
(then repeats)

•	 It	takes	a	large	ensemble	of	
flipping runs to average the 
variations	in	the	far-field
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The analytic SSD model calculates the modal 
amplitudes deterministically
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•	 The	far-field	simulation	
calculates the time-integrated 
fluence due to the continous 
SSD phase front

•	 The	flipping	model	changes	
its phase state randomly every 
coherence time until tasym
(then repeats)

•	 It	takes	a	large	ensemble	of	
flipping runs to average the 
variations	in	the	far-field

•	 The	analytic	model	emulates	
the modal amplitude without 
averaging
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The analytic SSD model calculates the modal 
amplitudes deterministically



An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model

TC8681_1

•	 The	sum	of	the	Fourier	modes	of	the	ablation	surface	shows	 
that the flipping model has a large variance

•	 This	variance	is	sufficient	to	lead	to	ignition	failure	for	some	targets
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•	 The	sum	of	the	Fourier	modes	of	the	ablation	surface	shows	 
that the flipping model has a large variance

•	 This	variance	is	sufficient	to	lead	to	ignition	failure	for	some	targets
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An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model
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•	 The	sum	of	the	Fourier	modes	of	the	ablation	surface	shows	 
that the flipping model has a large variance

•	 This	variance	is	sufficient	to	lead	to	ignition	failure	for	some	targets

101

100

10–1

10–2
0 2 4 6 8

Variance of
analytic model

Variance of
flipping model

Mean of flipping
model

Nonuniformity of the
ablation surface , = 30:40

Time (ns)

v
rm

s 
(n

m
)

The variance of the 
analytic model is 
smaller by a factor 
of 2

An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model
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•	 The	sum	of	the	Fourier	modes	of	the	ablation	surface	shows	 
that the flipping model has a large variance

•	 This	variance	is	sufficient	to	lead	to	ignition	failure	for	some	targets
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An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model



The 1-D Multi-FM case achieves a gain of 16,  
whereas the 1-D SSD case fails to ignite

TC8623a

CH foam

DT ice

DT
vapor

195 nm

3 nm CH

90 nm

1405 nm

Time (ns)

P
o

w
er

 (
T

W
)

0
0.0

0.4

0.8

1.2

2.0

1.6

2 4 6 8 10

Ring pulse shapes (per beam)



The 1-D Multi-FM case achieves a gain of 16,  
whereas the 1-D SSD case fails to ignite
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Polar-drive simulations of 1.2-MJ CH-foam ignition target

•		 At	peak	compression, 
 t = 9.8 ns



The 1-D Multi-FM case achieves a gain of 16,  
whereas the 1-D SSD case fails to ignite

TC8623c
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•		 At	peak	compression, 
 t = 9.8 ns
•		 Includes	sources	of		 	 	
 nonuniformity
  –  imprint , = 2:100
  –  inner/outer shell   
   roughness
  –  mistiming 30-ps rms
  – energy imbalance 8%
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Summary/Conclusions

A 1-D Multi-FM SSD solution was found that minimizes 
the nonuniformity and achieves gain

1-D Multi-FM will be tested on OMEGA EP in 2010.

•	 An	analytic	model	has	been	enhanced	to	handle	multiple	FM	modulators	
in each orthogonal direction

•	 The	analytic	SSD	model	reduces	the	variance	during	a	DRACO simulation

•	 The	1-D	Multi-FM	SSD	system	represents	a	significant	savings	for	the	NIF

–	 applied	in	the	fiber	front-end,	i.e.	no	bulk	optics

– low applied bandwidth means single frequency-conversion crystals 
(FCC) can be used

•	 Dynamic	bandwidth	reduction	will	be	employed	to	reduce	divergence 
and increase power during the drive pulse



The	analytic	model	was	used	to	find	a	1-D	Multi-FM	 
SSD system that optimized for asymptotic levels

TC8621_1
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The	analytic	model	was	used	to	find	a	1-D	Multi-FM	 
SSD system that optimized for asymptotic levels

TC8621_2
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The	analytic	model	was	used	to	find	a	1-D	Multi-FM	 
SSD system that optimized for asymptotic levels

TC8621_3
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•	 Most	modes	for	the	2-D	SSD	system	decouple	before	the	asymptotic 
limits are reached.

•	 The	levels	reached	by	the	1-D	Multi-FM	system	are	about	a	factor	 
of 2 larger than the 2-D SSD system when decoupling is included.



The	analytic	model	was	used	to	find	a	1-D	Multi-FM	 
SSD system that optimized for asymptotic levels

TC8621_4

•	 Most	modes	for	the	2-D	SSD	system	decouple	before	the	asymptotic 
limits are reached.

•	 The	levels	reached	by	the	1-D	Multi-FM	system	are	about	a	factor	 
of 2 larger than the 2-D SSD system when decoupling is included.
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