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NIF Polar-Drive Simulations of a 1.2-MJ CH-Foam  
Ignition Target with 0.5 THz of 1-D Multi-FM SSD  

Using An Analytic Model 
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A 1-D Multi-FM SSD solution was found that minimizes 
the nonuniformity and achieves gain

TC8617

Summary

1-D Multi-FM will be tested on OMEGA EP in 2010.

•	 An analytic model has been enhanced to handle multiple FM modulators 
in each orthogonal direction

•	 The analytic SSD model reduces the variance during a DRACO simulation

•	 The 1-D Multi-FM SSD system represents a significant savings for the NIF

–	 applied in the fiber front-end, i.e. no bulk optics

–	 low applied bandwidth means single frequency-conversion crystals 
(FCC) can be used

•	 Dynamic bandwidth reduction will be employed to reduce divergence 
and increase power during the drive pulse
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Multi-FM is produced by applying multiple 
FM modulators in a single dimension
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•	 Total bandwidth and divergence are distributed across the modulators 
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Multi-FM is produced by applying multiple 
FM modulators in a single dimension
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No pre-shear grating 
on NIF’s 1st SSD 

dimension

•	 Total bandwidth and divergence are distributed across the modulators

•	 Can be designed for bandwidth of DoUV = 0.5 THz (DmIR = 6 Å) single 
frequency-conversion crystals (FCC)

•	 Takes advantage of multiple color cycles without detrimental resonant 
features that are present in single modulator systems

 

Fiber optic front-end



1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_1

•	 Resonances are minimized because the spatial separation 
between the identical colors varies in time.

•	 Standard 1-D SSD

		  –	 900-GHz 
		  bandwidth

		  –	 two color cycles

		  –	 large resonances
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1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_2

•	 Resonances are minimized because the spatial separation 
between the identical colors varies in time.

•	 Standard 1-D SSD

		  –	 900-GHz 
		  bandwidth

		  –	 two color cycles

		  –	 large resonances
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1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_3

•	 Resonances are minimized because the spatial separation 
between the identical colors varies in time.

•	 1-D SSD Multi-FM

		  –	 500-GHz 
		  bandwidth

		  –	 many color cycles

		  –	 resonances 
		  minimized

•	 Standard 1-D SSD

		  –	 900-GHz 
		  bandwidth

		  –	 two color cycles

		  –	 large resonances
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1-D Multi-FM SSD takes advantage of multiple color 
cycles while reducing resonance effects

TC8619_4

•	 Resonances are minimized because the spatial separation 
between the identical colors varies in time.

•	 1-D SSD Multi-FM

		  –	 500-GHz 
		  bandwidth

		  –	 many color cycles

		  –	 resonances 
		  minimized

•	 Standard 1-D SSD

		  –	 900-GHz 
		  bandwidth

		  –	 two color cycles

		  –	 large resonances
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The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_1

•	 Models the continuously 
	 changing near-field phase 
	 front and far-field speckle 
	 pattern

•	 Smoothing results from 
	 temporal integration

Far-field simulation of SSD
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The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_2

•	 Deterministic model

Analytic Model

•	 Stochastic model

Flipping Model
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•	 Models the continuously 
	 changing near-field phase 
	 front and far-field speckle 
	 pattern

•	 Smoothing results from 
	 temporal integration

Far-field simulation of SSD



The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_3

•	 Deterministic model

•	 Analytic temporal integration

Analytic Model

•	 Stochastic model

•	 Precalculation of tc and tasym

Flipping Model
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•	 Models the continuously 
	 changing near-field phase 
	 front and far-field speckle 
	 pattern

•	 Smoothing results from 
	 temporal integration

Far-field simulation of SSD



The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_4

•	 Deterministic model

•	 Analytic temporal integration

•	 Pulse-shape dependent

•	 Initial random state of phases

Analytic Model

•	 Stochastic model

•	 Precalculation of tc and tasym

•	 Pulse-shape dependent

•	 Initial random state of phases

Flipping Model
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•	 Models the continuously 
	 changing near-field phase 
	 front and far-field speckle 
	 pattern

•	 Smoothing results from 
	 temporal integration

Far-field simulation of SSD



The flipping and analytic models of SSD emulate the 
effect of smoothing during a DRACO simulation

TC8720_5

•	 Deterministic model

•	 Analytic temporal integration

•	 Pulse-shape dependent

•	 Initial random state of phases

•	 Phase remains constant

•	 Amplitude varies

•	 Inherently models the asymptotic 
behavior

Analytic Model

•	 Stochastic model

•	 Precalculation of tc and tasym

•	 Pulse-shape dependent

•	 Initial random state of phases

•	 Phase can randomly flip every tc
•	 Amplitude is constant

•	 Random phases repeat after 
tasym

Flipping Model
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•	 Models the continuously 
	 changing near-field phase 
	 front and far-field speckle 
	 pattern

•	 Smoothing results from 
	 temporal integration

Far-field simulation of SSD



The analytic SSD model calculates the modal 
amplitudes deterministically

TC8620

•	 The far-field simulation 
calculates the time-integrated 
fluence due to the continous 
SSD phase front
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TC8620a

•	 The far-field simulation 
calculates the time-integrated 
fluence due to the continous 
SSD phase front
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vasym Indicates the asymptotic level

The analytic SSD model calculates the modal 
amplitudes deterministically



TC8620b

•	 The far-field simulation 
calculates the time-integrated 
fluence due to the continous 
SSD phase front
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Indicates the time that the flipping model 
repeats random stream

•	 The flipping model changes 
its phase state randomly every 
coherence time until tasym
(then repeats)

The analytic SSD model calculates the modal 
amplitudes deterministically



TC8620c

•	 The far-field simulation 
calculates the time-integrated 
fluence due to the continous 
SSD phase front
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•	 The flipping model changes 
its phase state randomly every 
coherence time until tasym
(then repeats)

The analytic SSD model calculates the modal 
amplitudes deterministically
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•	 The far-field simulation 
calculates the time-integrated 
fluence due to the continous 
SSD phase front

•	 The flipping model changes 
its phase state randomly every 
coherence time until tasym
(then repeats)
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The analytic SSD model calculates the modal 
amplitudes deterministically
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•	 The far-field simulation 
calculates the time-integrated 
fluence due to the continous 
SSD phase front

•	 The flipping model changes 
its phase state randomly every 
coherence time until tasym
(then repeats)

•	 It takes a large ensemble of 
flipping runs to average the 
variations in the far-field
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The analytic SSD model calculates the modal 
amplitudes deterministically
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•	 The far-field simulation 
calculates the time-integrated 
fluence due to the continous 
SSD phase front

•	 The flipping model changes 
its phase state randomly every 
coherence time until tasym
(then repeats)

•	 It takes a large ensemble of 
flipping runs to average the 
variations in the far-field

•	 The analytic model emulates 
the modal amplitude without 
averaging
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The analytic SSD model calculates the modal 
amplitudes deterministically



An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model
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•	 The sum of the Fourier modes of the ablation surface shows  
that the flipping model has a large variance

•	 This variance is sufficient to lead to ignition failure for some targets
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•	 The sum of the Fourier modes of the ablation surface shows  
that the flipping model has a large variance

•	 This variance is sufficient to lead to ignition failure for some targets
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An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model
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•	 The sum of the Fourier modes of the ablation surface shows  
that the flipping model has a large variance

•	 This variance is sufficient to lead to ignition failure for some targets
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An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model
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•	 The sum of the Fourier modes of the ablation surface shows  
that the flipping model has a large variance

•	 This variance is sufficient to lead to ignition failure for some targets
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An ensemble of multiple DRACO simulations
illustrate the advantage of the analytic model



The 1-D Multi-FM case achieves a gain of 16,  
whereas the 1-D SSD case fails to ignite
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The 1-D Multi-FM case achieves a gain of 16,  
whereas the 1-D SSD case fails to ignite
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Polar-drive simulations of 1.2-MJ CH-foam ignition target

• 	 At peak compression, 
	 t = 9.8 ns



The 1-D Multi-FM case achieves a gain of 16,  
whereas the 1-D SSD case fails to ignite

TC8623c
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Polar-drive simulations of 1.2-MJ CH-foam ignition target

• 	 At peak compression, 
	 t = 9.8 ns
• 	 Includes sources of 	 	 	
	 nonuniformity
		  – 	imprint , = 2:100
		  – 	inner/outer shell 		
			   roughness
		  – 	mistiming 30-ps rms
		  –	 energy imbalance 8%
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Summary/Conclusions

A 1-D Multi-FM SSD solution was found that minimizes 
the nonuniformity and achieves gain

1-D Multi-FM will be tested on OMEGA EP in 2010.

•	 An analytic model has been enhanced to handle multiple FM modulators 
in each orthogonal direction

•	 The analytic SSD model reduces the variance during a DRACO simulation

•	 The 1-D Multi-FM SSD system represents a significant savings for the NIF

–	 applied in the fiber front-end, i.e. no bulk optics

–	 low applied bandwidth means single frequency-conversion crystals 
(FCC) can be used

•	 Dynamic bandwidth reduction will be employed to reduce divergence 
and increase power during the drive pulse



The analytic model was used to find a 1-D Multi-FM  
SSD system that optimized for asymptotic levels

TC8621_1
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The analytic model was used to find a 1-D Multi-FM  
SSD system that optimized for asymptotic levels

TC8621_2
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The analytic model was used to find a 1-D Multi-FM  
SSD system that optimized for asymptotic levels

TC8621_3
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•	 Most modes for the 2-D SSD system decouple before the asymptotic 
limits are reached.

•	 The levels reached by the 1-D Multi-FM system are about a factor  
of 2 larger than the 2-D SSD system when decoupling is included.



The analytic model was used to find a 1-D Multi-FM  
SSD system that optimized for asymptotic levels

TC8621_4

•	 Most modes for the 2-D SSD system decouple before the asymptotic 
limits are reached.

•	 The levels reached by the 1-D Multi-FM system are about a factor  
of 2 larger than the 2-D SSD system when decoupling is included.
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=
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vasym is reached 


