NIF Polar-Drive Simulations of a 1.2-MJ CH-Foam
Ignition Target with 0.5 THz of 1-D Multi-FM SSD
Using An Analytic Model
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Summary

A 1-D Multi-FM SSD solution was found that minimizes
the nonuniformity and achieves gain
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* An analytic model has been enhanced to handle multiple FM modulators
in each orthogonal direction

 The analytic SSD model reduces the variance during a DRACO simulation

e The 1-D Multi-FM SSD system represents a significant savings for the NIF
— applied in the fiber front-end, i.e. no bulk optics
— low applied bandwidth means single frequency-conversion crystals
(FCC) can be used

e Dynamic bandwidth reduction will be employed to reduce divergence
and increase power during the drive pulse

1-D Multi-FM will be tested on OMEGA EP in 2010.
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Multi-FM is produced by applying multiple

FM modulators in a single dimension
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Time delay Disperse
(y direction) (y direction)
Correct time delay (y)

* Total bandwidth and divergence are distributed across the modulators
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Multi-FM is produced by applying multiple

FM modulators in a single dimension
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Fiber optic front-end E-O
bandwidth

Eo(f) i i i

No pre-shear grating Disperse
on NIF’s 1st SSD (y direction)
dimension

* Total bandwidth and divergence are distributed across the modulators

e Can be designed for bandwidth of Avyy = 0.5 THz (AA4|g = 6 A) single
frequency-conversion crystals (FCC)

* Takes advantage of multiple color cycles without detrimental resonant
features that are present in single modulator systems
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1-D Multi-FM SSD takes advantage of multiple color

cycles while reducing resonance effects
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1-D Multi-FM SSD takes advantage of multiple color

cycles while reducing resonance effects
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1-D Multi-FM SSD takes advantage of multiple color
cycles while reducing resonance effects
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* Resonances are minimized because the spatial separation
between the identical colors varies in time.
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1-D Multi-FM SSD takes advantage of multiple color
cycles while reducing resonance effects
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* Resonances are minimized because the spatial separation
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The flipping and analytic models of SSD emulate the
effect of smoothing during a DRACO simulation
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The flipping and analytic models of SSD emulate the
effect of smoothing during a DRACO simulation
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Flipping Model Analytic Model

e Stochastic model e Deterministic model
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The flipping and analytic models of SSD emulate the
effect of smoothing during a DRACO simulation
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Flipping Model Analytic Model
e Stochastic model e Deterministic model
* Precalculation of t; and t;gym * Analytic temporal integration
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The flipping and analytic models of SSD emulate the
effect of smoothing during a DRACO simulation
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The flipping and analytic models of SSD emulate the

effect of smoothing during a DRACO simulation -
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e —— front and far-field speckle
~20-10 0 10 20 pattern
x near field (cm) ¢ Smoothing results from
temporal integration

y near field
(cm)
|
S oo

(arbitrary units)
o
($)]
|
|

Speckle intensity
o
=)

-0.5 0.0 0.5
Far field (mm)

Flipping Model Analytic Model
e Stochastic model e Deterministic model
* Precalculation of t; and t;gym * Analytic temporal integration
e Pulse-shape dependent e Pulse-shape dependent
* Initial random state of phases * I|nitial random state of phases

* Phase can randomly flip every t. * Phase remains constant
e Amplitude is constant  Amplitude varies

e Random phases repeat after * Inherently models the asymptotic
tasym behavior
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The analytic SSD model calculates the modal

amplitudes deterministically
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Nonuniformity for ¢ mode = 50

e The far-field simulation
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calculates the time-integrated
fluence due to the continous
SSD phase front
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The analytic SSD model calculates the modal

amplitudes deterministically
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The analytic SSD model calculates the modal

amplitudes deterministically
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The analytic SSD model calculates the modal

amplitudes deterministically
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The analytic SSD model calculates the modal

amplitudes deterministically
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The analytic SSD model calculates the modal

amplitudes deterministically
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The analytic SSD model calculates the modal

amplitudes deterministically
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The far-field simulation
calculates the time-integrated
fluence due to the continous
SSD phase front

The flipping model changes
its phase state randomly every
coherence time until tagym
(then repeats)

It takes a large ensemble of
flipping runs to average the
variations in the far-field

The analytic model emulates
the modal amplitude without
averaging



An ensemble of multiple DRACO simulations

illustrate the advantage of the analytic model
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Nonuniformity of the
ablation surface ¢ = 30:40
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e The sum of the Fourier modes of the ablation surface shows
that the flipping model has a large variance

* This variance is sufficient to lead to ignition failure for some targets
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An ensemble of multiple DRACO simulations

illustrate the advantage of the analytic model

UR
LLE

Nonuniformity of the
ablation surface ¢ = 30:40

1 .
@ Variance of 10 E ! | | | | | | N -
flipping model - < Indicates the
— Mean of flipping - | | mean over 30
model DRACO simulations
E 100¢ E
S :
. i .
g = -
©10-1¢ E
102
0

Time (ns)

e The sum of the Fourier modes of the ablation surface shows
that the flipping model has a large variance

* This variance is sufficient to lead to ignition failure for some targets
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An ensemble of multiple DRACO simulations

illustrate the advantage of the analytic model
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e The sum of the Fourier modes of the ablation surface shows
that the flipping model has a large variance

* This variance is sufficient to lead to ignition failure for some targets
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An ensemble of multiple DRACO simulations

illustrate the advantage of the analytic model
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e The sum of the Fourier modes of the ablation surface shows
that the flipping model has a large variance

* This variance is sufficient to lead to ignition failure for some targets
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The 1-D Multi-FM case achieves a gain of 16,

whereas the 1-D SSD case fails to ignite
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The 1-D Multi-FM case achieves a gain of 16,

whereas the 1-D SSD case fails to ignite
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Polar-drive simulations of 1.2-MJ CH-foam ignition target
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The 1-D Multi-FM case achieves a gain of 16,
whereas the 1-D SSD case fails to ignite
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Summary/Conclusions

A 1-D Multi-FM SSD solution was found that minimizes
the nonuniformity and achieves gain
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* An analytic model has been enhanced to handle multiple FM modulators
in each orthogonal direction

 The analytic SSD model reduces the variance during a DRACO simulation

e The 1-D Multi-FM SSD system represents a significant savings for the NIF
— applied in the fiber front-end, i.e. no bulk optics
— low applied bandwidth means single frequency-conversion crystals
(FCC) can be used

e Dynamic bandwidth reduction will be employed to reduce divergence
and increase power during the drive pulse

1-D Multi-FM will be tested on OMEGA EP in 2010.
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The analytic model was used to find a 1-D Multi-FM

SSD system that optimized for asymptotic levels
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The analytic model was used to find a 1-D Multi-FM

SSD system that optimized for asymptotic levels
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The analytic model was used to find a 1-D Multi-FM

SSD system that optimized for asymptotic levels
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* Most modes for the 2-D SSD system decouple before the asymptotic
limits are reached.

* The levels reached by the 1-D Multi-FM system are about a factor
of 2 larger than the 2-D SSD system when decoupling is included.
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The analytic model was used to find a 1-D Multi-FM
SSD system that optimized for asymptotic levels
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* Most modes for the 2-D SSD system decouple before the asymptotic
limits are reached.

* The levels reached by the 1-D Multi-FM system are about a factor
of 2 larger than the 2-D SSD system when decoupling is included.
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