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•	 A compact device to generate up to 150-kG magnetic seed fields  
has been assembled

•	 Cylindrical targets embedded in a 10- to 60-kG seed magnetic field 
have been imploded with 14 kJ of laser energy

•	 The compressed magnetic field in the target hot spot is measured  
by proton deflection

•	 Cylindrical targets have demonstrated magnetic amplification

•	 Spherical targets will be used to measure the effect of MG magnetic  
fields on ICF hot spots

10- to 40-MG magnetic fields are produced on OMEGA  
by laser-driven flux compression
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•	 Adding a magnetic field in a compressed  
ICF target increases the temperature and 
decreases the density for constant PHS

The performance of ICF targets can be improved  
with MG magnetic fields
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Yn ~ n2 GvvH
     GvvH ? 1/T1/2 e–a/T

     for constant PHS, n ? 1/T

NIF 1.5-MJ, polar-drive point design

    tHS . 30 g/cm3, THS . 7 keV (before ignition),
    rHS . 50 nm

  l9/l< ~ 0.2 for B = 10 MG

   rLa = 27 nm ~ 1/2 rHS for B = 100 MG
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Magnetic fields may play a significant role  
in the collimation of astrophysical jets
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Hubble Space Telescope images
OMEGA jet

(no magnetic field)

A MG magnetic field would be required to significantly  
alter the laboratory jet performance.



Magnetic fields have been achieved through flux 
compression of electromagnetically or explosively  
driven implosions
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B field of 28 MG achieved with high explosives at VNIEF (Russia).

	 *	A. D. Sakharov, Sov. Phys. Usp. 9, 294 (1966).
	**	F. S. Felber et al., Phys. Fluids 31, 2053 (1988).
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B = 0.1 MG
(Seed field)

20 nm

Laser

430 nm

1500 nm

430 nm

Compressed field

Bz

Shock

D2

Bz

U = rBzR2 . const

High magnetic fields are generated through  
laser compression of a seed field*

E17764a

•	 In a cylindrical target, an axial field can be generated using two Helmholtz-
like coils; the target is imploded by a laser to amplify the field

*O. V. Gotchev et al., to be published in Phys. Rev. Lett.
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The magnetic field is trapped in the shock-ionized  
gas fill and then compressed by the imploding shell
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Further compression by the shell amplifies  
the shock-compressed magnetic field.



The maximum magnetic amplification is determined by  
the target convergence and magnetic Reynolds number
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•	 In OMEGA cylindrical implosions, Rem is ~ 50 because of 
the high implosion velocity (>107 cm/s) and plasma conductivity
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1-D MHD simulations of cylindrical implosions show a Tion 
with a magnetic field ~2 × Tion without magnetic fields
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The B field is compressed to ~100 MG at the hot-spot center 
giving a plasma beta of ~1 at the peak magnetic field.
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Experimental

MIFEDS provides in-target seed fields between 10 and  
150 kG, depending on coil geometry and energy settings 
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•	 MIFEDS is a compact, self-contained system that 
stores less than 100 J and is powered by 24 VDC

•	 It delivers ~110-kA peak current in a 350-ns pulse
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Coil geometry and placement of the cylindrical target 
have been optimized for OMEGA implosions

TC8512a

The cylindrical implosion target is positioned  
in a uniform-field region between the coils.
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Proton deflectometry is used to measure  
the magnetic field in the compressed core
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Geant4 simulations are used for  
an accurate interpretation of the data

~v v L v

m
e Bd m

e B D

B
eL

m v
p p

p

,

. xD

D

= =

=v = =

~D

#

FSC

Proton
backlighter

D + 3He → 4He + p
(14.7 MeV)

Initial seed
field of B < 90 kG

Cylindrical
target

p

p

CR-39 
Detector

B Hot
spot

L
D

D



The protons with the largest deflection probe 
the highest B-field region in the target hot spot
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Protons that travel through the hot spot lose less energy  
that the protons that travel only through the dense shell.
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Experimental data from proton radiography  
clearly show deflection in a magnetic field
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Measured proton deflections are well reproduced by 
Geant4 with an GBH of ~30 MG over a 34-nm hot spot
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Reversing the polarity of the seed field reverses  
the deflection of the proton probe 
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The minimum average 
magnetic field matching  
this deflection is 40 MG.

The minimum average 
magnetic field matching 
this deflection is 30 MG.
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Cylindrical implosions have hot-spot conditions where  
the ion mean-free-path and Larmor radius ~ hot-spot radius
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Collision mean-free-path and Larmor radii for a simulated magnetized 
hot spot (R = 20 nm) with a volume-averaged field of 30 MG. 

tHS (g/cm3) mfpie (nm) mfpii (nm) riL (nm)

Cylinder 0.5 151 5.6 5.7

Sphere 5.0 27 0.52 7.7

Spherical implosions are needed to measure  
the effect of magnetic fields on hot-spot yields.
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2-D simulations of spherical implosions show  
higher-ion temperatures with a magnetic field
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The applications of laser-driven flux compression  
go beyond ICF

E15690b

•	 Guiding fields for hot electrons  
in fast ignition.

•	 Generation of positron–electron 
plasma in the laboratory.*

•	 Propagation of plasma jets in  
large-scale magnetic fields.

*J. Myatt et al., Bull. Am. Phys. Soc. 51 (7), 25 (2006).
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10- to 40-MG magnetic fields are produced on OMEGA  
by laser-driven flux compression
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Summary/Conclusions
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•	 A compact device to generate up to 150-kG magnetic seed fields  
has been assembled

•	 Cylindrical targets embedded in a 10- to 60-kG seed magnetic field 
have been imploded with 14 kJ of laser energy

•	 The compressed magnetic field in the target hot spot is measured  
by proton deflection

•	 Cylindrical targets have demonstrated magnetic amplification

•	 Spherical targets will be used to measure the effect of MG magnetic  
fields on ICF hot spots


