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An equation-of-state table of deuterium from first-
principles calculations has been established  
and has indicated significance in ICF implosions

TC8609

Summary

•	 We have established a first-principles equation-of-state (FP-EOS) table 
for deuterium, using the restricted path-integral Monte Carlo (PIMC) 
method, which covers typical ICF fuel conditions of t . 0.002 ~ 673 g/cm3 
and T . 1.35 eV ~ 5.5 keV

•	 The FP-EOS table shows discrepancies in pressures and energies in 
the moderate  coupling (C ≥ 1) and degenerate (i ≤ 1) regimes when 
compared to the SESAME table

•	 Hydrodynamics simulations of cryogenic ICF implosions using the  
FP-EOS table have indicated significant differences in peak density, tR, 
and neutron yield relative to SESAME-EOS simulations
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Low-adiabat ICF implosion designs routinely access  
to strongly coupled and degenerate plasma conditions!

TC8610

C = 1/a kT,  	 a – the Wigner–Seitz radius
i = T/ TF ,    	 TF – the Fermi temperature 
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The SESAME-EOS table is based upon the “chemical model” 
of matter*, which does not fully account for strong-coupling 
and degeneracy effects

TC8611

The essential physical models in the SESAME-EOS table:

•	 The molecular solid phase: is valid only in low-T and not-too-high 
density (t ≤ 4 g/cm3) regimes where molecular identity still exists.

•	 The atomic solid phase:  The zero-Kelvin cold curve used in the 
atomic-solid model is still uncertain*. 

•	 The molecular/atomic fluid phase:  The first-order expansion 
was used in the liquid perturbation theory to only account  
for the nearest neighbor interactions. 

	 Strong-coupling and many-body degeneracy effects 
are not fully accounted.

*G. I. Kerley, SAND2003-3613 Report.



The first-principles method of path-integral Monte Carlo 
(PIMC) was used to calculate the FP-EOS of deuterium

TC8612

•	 For a many-body system in thermal equilibrium at temperature T, the density 
matrix t(R,Rl;T) uniquely contains all thermodynamic information of the system; 
t(R,Rl;T) is defined as (in configuration representation)
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•	 Once we know t(R,Rl;b), we can calculate the thermodynamic properties 
of the system with the corresponding operators Ô:
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The principal Hugoniot comparison shows that 
deuterium is slightly softer under ~2 Mbar, but stiffer 
in FP-EOS than SESAME for ~2 Mbar < P < ~100 Mbar
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The Hugonoit:  Ef – Ei + 0.5 × (Pf + Pi) × (Vf – Vi) = 0

*B. Militzer and D. M. Ceperley,  Phys. Rev. Lett. 85, 1890 (2000).
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In comparison to the SESAME table, the FP-EOS table has 
shown large differences, especially in internal energy
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The FP-EOS table covers typical fuel conditions  
of t . 0.002 ~ 673 g/cm3 and T . 1.35 eV ~ 5.5 keV.



Hydro-simulations of low-adiabat implosions using the  
FP-EOS has indicated significant differences in tpeak, tR, 
and neutron-yield compared to SESAME simulations
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SESAME:	tpeak = 182 g/cm3, tR = 307 mg/cm2, Yield = 2.9 × 1011

FP-EOS:  	tpeak = 119 g/cm3, tR = 268 mg/cm2, Yield = 2.5 × 1011
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Simulations for NIF direct-drive designs also show 
significant differences in peak density, yield, and gain
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SESAME:	tpeak = 383 g/cm3, tR = 1.1 g/cm2, Yield = 2.4 × 1019, Gain = 45
FP-EOS:  	tpeak = 294 g/cm3, tR = 1.0 g/cm2, Yield = 1.8 × 1019, Gain = 34
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An equation-of-state table of deuterium from first-
principles calculations has been established  
and has indicated significance in ICF implosions

TC8609

Summary/Conclusions

•	 We have established a first-principles equation-of-state (FP-EOS) table 
for deuterium, using the restricted path-integral Monte Carlo (PIMC) 
method, which covers typical ICF fuel conditions of t . 0.002 ~ 673 g/cm3 
and T . 1.35 eV ~ 5.5 keV

•	 The FP-EOS table shows discrepancies in pressures and energies in 
the moderate  coupling (C ≥ 1) and degenerate (i ≤ 1) regimes when 
compared to the SESAME table

•	 Hydrodynamics simulations of cryogenic ICF implosions using the  
FP-EOS table have indicated significant differences in peak density, tR, 
and neutron yield relative to SESAME-EOS simulations


