Theoretical Investigation of Strong Coupling and Degeneracy Effects in ICF Implosions

Summary

An equation-of-state table of deuterium from firstprinciples calculations has been established and has indicated significance in ICF implosions

• We have established a first-principles equation-of-state (FP-EOS) table for deuterium, using the restricted path-integral Monte Carlo (PIMC) method, which covers typical ICF fuel conditions of $\rho \approx 0.002 \sim 673$ g/cm³ and $T \approx 1.35$ eV ~ 5.5 keV

UR 🔌

- The FP-EOS table shows discrepancies in pressures and energies in the moderate coupling (Γ ≥ 1) and degenerate (θ ≤ 1) regimes when compared to the SESAME table
- Hydrodynamics simulations of cryogenic ICF implosions using the FP-EOS table have indicated significant differences in peak density, ρR , and neutron yield relative to SESAME-EOS simulations

B. Militzer

Department of Earth and Planetary Science and Astronomy University of California–Berkeley

V. N. Goncharov, T. R. Boehly, P. B. Radha, and S. Skupsky

University of Rochester Laboratory for Laser Energetics

Low-adiabat ICF implosion designs routinely access to strongly coupled and degenerate plasma conditions!

TC8610

The SESAME-EOS table is based upon the "chemical model" of matter*, which does not fully account for strong-coupling and degeneracy effects

The essential physical models in the SESAME-EOS table:

- The molecular solid phase: is valid only in low-T and not-too-high density ($\rho \le 4 \text{ g/cm}^3$) regimes where molecular identity still exists.
- <u>The atomic solid phase:</u> The zero-Kelvin cold curve used in the atomic-solid model is still uncertain*.
- <u>The molecular/atomic fluid phase</u>: The first-order expansion was used in the liquid perturbation theory to only account for the nearest neighbor interactions.
- Strong-coupling and many-body degeneracy effects are not fully accounted.

The first-principles method of path-integral Monte Carlo (PIMC) was used to calculate the FP-EOS of deuterium

For a many-body system in thermal equilibrium at temperature *T*, the density matrix *ρ*(*R*,*R*';*T*) uniquely contains all thermodynamic information of the system; *ρ*(*R*,*R*';*T*) is defined as (in configuration representation)

$$\rho(\mathbf{R},\mathbf{R}';\mathbf{T}) = \left\langle \mathbf{R} \left| \mathbf{e}^{-\vec{\mathbf{H}}/k\mathbf{T}} \right| \mathbf{R}' \right\rangle = \sum_{n} \varphi_{n}(\mathbf{R}) \varphi_{n}(\mathbf{R}') \mathbf{e}^{-\mathbf{E}_{n}/k\mathbf{T}} \qquad \left(\vec{\mathbf{H}} \varphi_{n} = \mathbf{E}_{n} \varphi_{n}; \vec{\mathbf{H}} = \vec{\mathbf{K}} + \vec{\mathbf{V}} \right)$$

• Using the convolution property of $\rho(R,R';\beta)$, one can compute the density matrix from high-T ρ_0

$$\rho(\mathbf{R}, \mathbf{R}'; \boldsymbol{\beta}) = \int d\mathbf{R}_1 d\mathbf{R}_2 \dots d\mathbf{R}_{M-1} \rho_0(\mathbf{R}, \mathbf{R}_1; \Delta \boldsymbol{\beta})$$
$$\times \rho_0(\mathbf{R}_1, \mathbf{R}_2; \Delta \boldsymbol{\beta}) \dots \rho_0(\mathbf{R}_{M-1}, \mathbf{R}'; \Delta \boldsymbol{\beta})$$

with
$$\rho_0(\mathbf{R}_i, \mathbf{R}_{i+1}; \Delta \beta) = \exp\left[\frac{-\pi}{\lambda_\Delta^2}(\mathbf{R}_i - \mathbf{R}_{i+1})^2 + \Delta \beta \times \mathbf{V}(\mathbf{R}_i)\right], \beta = 1/kT, \Delta \beta = \beta/M,$$

and $\lambda_D = \sqrt{2\pi \hbar^2 \Delta \beta / m}$ is the DeBroglie wavelength

• Once we know $\rho(R,R';\beta)$, we can calculate the thermodynamic properties of the system with the corresponding operators \hat{O} :

$$\langle \hat{\mathbf{O}} \rangle = \frac{\int d\mathbf{R} d\mathbf{R}' \left\langle \mathbf{R} | \hat{\mathbf{O}} | \mathbf{R}' \right\rangle \left\langle \mathbf{R}' | \boldsymbol{\rho}(\boldsymbol{\beta}) | \mathbf{R} \right\rangle}{\int d\mathbf{R} \left\langle \mathbf{R} | \boldsymbol{\rho}(\boldsymbol{\beta}) | \mathbf{R} \right\rangle}$$

TC8612

The principal Hugoniot comparison shows that deuterium is slightly softer under ~2 Mbar, but stiffer in FP-EOS than SESAME for ~2 Mbar < *P* < ~100 Mbar

*B. Militzer and D. M. Ceperley, Phys. Rev. Lett. <u>85</u>, 1890 (2000).

In comparison to the SESAME table, the FP-EOS table has shown large differences, especially in internal energy

Hydro-simulations of low-adiabat implosions using the FP-EOS has indicated significant differences in ρ_{peak} , ρR , and neutron-yield compared to SESAME simulations

Simulations for NIF direct-drive designs also show significant differences in peak density, yield, and gain

An equation-of-state table of deuterium from firstprinciples calculations has been established and has indicated significance in ICF implosions

• We have established a first-principles equation-of-state (FP-EOS) table for deuterium, using the restricted path-integral Monte Carlo (PIMC) method, which covers typical ICF fuel conditions of $\rho \approx 0.002 \sim 673$ g/cm³ and $T \approx 1.35$ eV ~ 5.5 keV

UR 🔌

- The FP-EOS table shows discrepancies in pressures and energies in the moderate coupling (Γ ≥ 1) and degenerate (θ ≤ 1) regimes when compared to the SESAME table
- Hydrodynamics simulations of cryogenic ICF implosions using the FP-EOS table have indicated significant differences in peak density, ρR , and neutron yield relative to SESAME-EOS simulations