Rayleigh–Taylor Measurements in Planar CH and SiO₂ Foils on OMEGA

Face-on x-ray radiograph of a 20- μ m-thick planar SiO₂ target with a $\lambda = 60-\mu$ m 2-D intensity modulation imprinted by a special phase plate on the OMEGA laser

Time (minor)

J. D. Hager University of Rochester Laboratory for Laser Energetics 51st Annual Meeting of the American Physical Society Division of Plasma Physics Atlanta, GA 2–6 November 2009

Rayleigh–Taylor (RT) experiments at 1 \times 10¹⁵ W/cm² with CH and SiO₂ ablators show significant growth differences

- At peak drive intensities of 5×10^{14} W/cm², both CH and CH–SiO₂ targets show significant 2-D modulation growth
- At peak drive intensities of $1\times 10^{15}\,W/cm^2$
 - CH targets with 2-D modulations (pre-imposed and intensity imprinted) show a reduction in RT growth caused by electron preheat

- SiO₂ targets with 2-D intensity imprinted modulations show significant RT growth
- SiO₂ targets with a thin CH ablator with pre-imposed 2-D modulations show a reduction in RT growth
- Future experiments will investigate electron preheat as the stabilizing mechanism in CH-SiO₂ targets at intensities of 1 \times 10¹⁵ W/cm²

J. P. Knauer V. A. Smalyuk* S. X. Hu D. D. Meyerhofer

T. C. Sangster

University of Rochester Laboratory for Laser Energetics

Previous RT experiments demonstrated decreased instability growth at peak laser intensities of 1×10^{15} W/cm² in CH targets caused by electron preheat*

^{**} R. Betti et al., Phys. Plasmas 5, 1446 (1998).

Planar CH, SiO₂, and CH–SiO₂ targets are driven by 10 to 12 drive beams, while an x-ray backlighter is used to measure areal density modulation growth

CH and SiO₂ targets were seeded with an intensityimprinted 2-D modulation, while pre-imposed mass modulations were used on CH and CH–SiO₂ targets

40- μm -thick CH targets driven at low intensities $(5\times 10^{14}\,W/cm^2)$ show significant growth up to the modulation saturation amplitude

17- μ m-thick SiO₂ targets with a perturbed 3- μ m CH ablator show significant modulation growth in SiO₂ at low intensities

At high intensities $(1 \times 10^{15} \text{ W/cm}^2)$ imprinted modulations grow in SiO₂, while CH targets of comparable mass show no growth

17- μ m-thick SiO₂ targets with a perturbed 3- μ m CH ablator show no significant instability growth at high intensities, while SiO₂ without CH shows significant modulation growth

Future experiments will investigate electron preheat as the stabilizing mechanism in CH-SiO₂ targets at high intensities

- Gluing pre-imposed CH ablators to SiO₂ creates variations in the ablator thickness and material that may affect growth measurements in SiO₂.
- Initial conditions for pre-imposed and intensity-imprinted modulations are different.
- SiO₂ targets with an unmodulated CH overcoat will be imprinted with intensity modulations.
 - CH overcoats eliminate the need for glue and provide a higher precision ablator thickness.
 - -Initial conditions will closely match SiO₂ targets

Summary/Conclusions

Rayleigh–Taylor (RT) experiments at 1×10^{15} W/cm² with CH and SiO₂ ablators show significant growth differences

- At peak drive intensities of 5 \times 10¹⁴ W/cm², both CH and CH–SiO₂ targets show significant 2-D modulation growth
- At peak drive intensities of $1\times 10^{15}\,W/cm^2$
 - CH targets with 2-D modulations (pre-imposed and intensity imprinted) show a reduction in RT growth caused by electron preheat

- SiO₂ targets with 2-D intensity imprinted modulations show significant RT growth
- SiO₂ targets with a thin CH ablator with pre-imposed 2-D modulations show a reduction in RT growth
- Future experiments will investigate electron preheat as the stabilizing mechanism in CH-SiO₂ targets at intensities of 1 \times 10¹⁵ W/cm²