Measurements of Strain-Induced Refractive-Index Changes in LiF Using Direct-Drive Ramp Compression

University of Rochester Laboratory for Laser Energetics 51st Annual Meeting of the American Physical Society Division of Plasma Physics Atlanta, GA 2–6 November 2009

LLE

The refractive index of quasi-isentropically compressed LiF has been measured to ~800 GPa

- The shock-compressed refractive index of LiF was previously studied to 100 GPa*
- LiF is observed to be transparent up to 800 GPa with quasi-isentropic compression
 - remains transparent for single shocks < 160 GPa
- Ramp-compressed LiF refractive index is in agreement with existing data
 - does not depend on loading technique (shock versus ramp compression)
- LiF refractive index scales linearly with density up to 800 GPa

^{*}J. L. Wise and L. C. Chhabildas, presented at the American Physical Society Topical Conference on Shock Waves in Condensed Matter, Spokane, WA, 22 July 1985.

Collaborators

M.A. Barrios

T. R. Boehly

D. D. Meyerhofer

University of Rochester Laboratory for Laser Energetics

R. Smith

J. H. Eggert

D. G. Hicks

P. M. Celliers

G.W. Collins

R. Rygg

Lawrence Livermore National Laboratory

Changes in the refractive index affect VISAR measurements

Transparency of shocks in LiF windows makes it possible for VISAR to probe the material interface

- Single shocks up to 160 GPa are transparent in LiF
 - multi-shocks up to 500 GPa are transparent
- VISAR probes through compressed material, this alters its sensitivity
- For shock compression up to 100 GPa, the refractive index scales linearly with density:* $n = a + b\rho$

Simultaneous measurement of free-surface and apparent particle velocities provide index correction

- Diamond isentrope* and LiF EOS are known
- Use impedance matching to infer true particle velocity
- Derive correction from measured versus true particle velocity

^{*}D. K. Bradley et al., Phys. Rev. Lett. <u>102</u>, 075503 (2009).

Apparent U_p is compared to true U_p (derived from U_{fs}) to obtain correction

Quasi-isentropic ramp compression allows for continuous measurements to be made

$$\frac{dU_p^*}{dU_p} = n - \rho \frac{dn}{d\rho}$$

 Ramp experiment exhibited higher temperatures than predicted

Glue layers compromised ramp measurements, but the final state can be used to obtain correction

UR

LiF refractive index depends linearly on density to 800 GPa

The refractive index of quasi-isentropically compressed LiF has been measured to ~800 GPa

- The shock-compressed refractive index of LiF was previously studied to 100 GPa*
- LiF is observed to be transparent up to 800 GPa with quasi-isentropic compression
 - remains transparent for single shocks < 160 GPa
- Ramp-compressed LiF refractive index is in agreement with existing data
 - does not depend on loading technique (shock versus ramp compression)
- LiF refractive index scales linearly with density up to 800 GPa

^{*}J. L. Wise and L. C. Chhabildas, presented at the American Physical Society Topical Conference on Shock Waves in Condensed Matter, Spokane, WA, 22 July 1985.

The optical path length of linear window materials does not affect the particle velocity

- The apparent particle velocity $[V^*(t)]$ of the interface is dependent upon the refractive index $[V^*(t)] = -\frac{d}{dt} \left(\int_{x(t)}^{xr} n(x',t) dx' \right)$
- If LiF follows Gladstone–Dale $(n = a + b\rho)$ $[V^*(t)] = -\frac{d}{dt} \left[a(x_s/t) - (x/t) + b \int_{x(t)}^{x_s} \rho(x', t) dx' \right]$ Mass conservation
- True particle velocity [V(t)] is $V(t) = \frac{V^*(t)}{a}$
- No dependence upon the optical path length in LiF if the behavior follows Gladstone–Dale

Determination of laser pulse design to maintain shockless compression

UR

- Two methods of study
 - shock compression
 - ramp compression
- Each method makes it possible to study different regions of phase space
- Study whether loading technique affects the index of refraction
- Understand if melt causes LiF window blanking