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Observations and modeling of scattered-light spectra 
suggest cross-beam energy transfer during  
direct-drive implosions

E18354

• Without cross-beam energy transfer, hydrocode and ray-tracing 
predictions of the time-varying scattered light spectrum from OMEGA 
implosions show significant discrepancies with measurments.

• Including SBS cross-beam energy transfer improves the simulation 
of the observed scattered-light spectrum.

• Cross-beam energy-transfer modeling also reproduces the observed 
red shift in the SSD bandwidth for the scattered light.
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Time-dependent scattered-laser-light spectra in the SBS 
range (351±1 nm) are modeled for OMEGA implosions
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• A combination of codes  
is used

– LILAC1: 1-D hydrodynamic 
code predicts time- 
dependent implosion 
profiles

– SAGERAYS2: Ray traces 
laser light through the 
corona and calculates 
spectral shift3

– MATLAB code calculates 
total FABS spectrum 
collected from all 60 
OMEGA beams

1J. A. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
2R. S. Craxton and R. L. McCrory, J. Appl. Phys. 56, 108 (1984).
3T. Dewandre, J. R. Albritton, and E. A. Williams, Phys. Fluids 24, 528 (1981).

20-nm plastic shell
1-ns square pulse

Modeled Spectra
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Scattered-light spectra modeled without cross-beam 
transfer show all the basic structures observed  
but differ in some important details
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EM-seeded SBS cross-beam power transfer might cause 
some laser energy to “bypass” the high-absorption zone
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• Ion-acoustic wave (IAW) transfers 
energy from a  “pump” EM wave 
to a “seed” EM wave
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• Light entering the plasma can 
transfer energy to light that is 
leaving the plasma

Cross-Beam Power Transfer

Because the EM seed amplitude 
is of the same order as the pump, 
very small gains of only a few 
percent could significantly affect 
the absorbed energy.
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Beam crossings calculated from ray trace indicate that 
energy is typically lost by incoming beamlets
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The reference beam is at 
40° for one set of beamlets 
from one beam crossing. 

 * J. F. Myatt et al., Phys. Plasmas 11, 3394 (2004).
 ** C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).

Strength of the transfer is estimated using the  
spatial gain length* LSBS for crossing planar waves 

and a measure** of how close the conditions are  
to resonance for SBS cross-beam transfer 
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Calculating the energy lost/gained along each beamlet 
supports the transfer of energy out of beam center
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Summed over all sets of 
beamlets from all beams 

crossing the reference beam
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Cross-beam transfer scattered-light modeling improves 
the total scattered light and spectrum predictions
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• Calculations using plasma 
profiles from LILAC with a 
1-D model of cross-beam 
energy transport have 
more self-consistency
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Cross-beam energy-transfer calculations predict the 
observed red-shift in bandwidth for scattered light
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• For implosions with SSD, the 
scattered-light bandwidth is always 
strongly peaked on the red side

• When the cross-beam energy 
transfer is calculated independently 
for wavelength “bins” of the SSD 
bandwidth, a peak on the red side  
is predicted
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Summary/Conclusions

Observations and modeling of scattered-light spectra 
suggest cross-beam energy transfer during  
direct-drive implosions

See also I. V. Igumenshchev (JO5.00015)
and A. Shvydky (UO5.00009).

• Without cross-beam energy transfer, hydrocode and ray-tracing 
predictions of the time-varying scattered light spectrum from OMEGA 
implosions show significant discrepancies with measurments.

• Including SBS cross-beam energy transfer improves the simulation 
of the observed scattered-light spectrum.

• Cross-beam energy-transfer modeling also reproduces the observed 
red shift in the SSD bandwidth for the scattered light.


