Hydrodynamic Simulations and Optical Diagnosis of a Long-Scale-Length Channeling Experiment on OMEGA EP

Summary

A channeling experiment is planned for OMEGA EP to study physics related to fast ignition

- A long-scale-length plasma (L ~ 0.5 mm, T_e ~ 2 keV) will be generated with the long-pulse UV beams and irradiated with a 100-ps IR channeling beam
- The plasma formation will be diagnosed using grid image refractometry (GIR)
- The channeling will be diagnosed using a schlieren technique
- A 10-ps, UV probe beam is being developed

W. Theobald, W. Seka, S. Ivancic, G. Li, C. Ren, and D. Weiner

> University of Rochester Laboratory for Laser Energetics

The experiment makes use of OMEGA EP's unique capabilities

LLE

The IR beam is focused into a plasma with a 0.55-mm scale length

LL

A PIC simulation* predicted a deep density channel of radius ~20 μm

• This profile was spliced into SAGE profiles for optical probe modeling

UR 🔌

LL

In grid image refractometry (GIR),* the probe beam is passed through a grid and the ray deflection angles are measured

The ray deflection angles of interest range from *f*/4 to *f*/40

The densities of interest range from IR critical to eighth critical

Density channels in the plasma will be diagnosed using a schlieren technique

UR 🔌

The low-density channel should be easily seen with an *f*/8 schlieren stop

The 263-nm UV probe beam on OMEGA EP will be used for both grid image refractometry and schlieren

LLE

With the object plane at the center of the plasma, the grid is largely undistorted

With the object plane 2 mm behind the center of the plasma, the grid deviations can easily be measured

With the object plane 2 mm behind the center of the plasma, the grid deviations can easily be measured

Summary/Conclusions

A channeling experiment is planned for OMEGA EP to study physics related to fast ignition

- A long-scale-length plasma (L ~ 0.5 mm, T_e ~ 2 keV) will be generated with the long-pulse UV beams and irradiated with a 100-ps IR channeling beam
- The plasma formation will be diagnosed using grid image refractometry (GIR)
- The channeling will be diagnosed using a schlieren technique
- A 10-ps, UV probe beam is being developed

First experiments are planned for July 2010.